
Natural Language Processing

Pushpak Bhattacharyya
CSE Dept,

IIT Patna and Bombay

LSTM

15 jun, 2017 lgsoft:nlp:lstm:pushpak 1

Recap

15 jun, 2017 lgsoft:nlp:lstm:pushpak 2

Feedforward Network and
Backpropagation

15 jun, 2017 3 lgsoft:nlp:lstm:pushpak

Backpropagation algorithm

n  Fully connected feed forward network
n  Pure FF network (no jumping of

connections over layers)

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons)

j

i
wji

….

….

….

….

15 jun, 2017 4 lgsoft:nlp:lstm:pushpak

General Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

15 jun, 2017 5 lgsoft:nlp:lstm:pushpak

Recurrent Neural Network

15 jun, 2017 lgsoft:nlp:lstm:pushpak 6

Sequence processing m/c

15 jun, 2017 lgsoft:nlp:lstm:pushpak 7

E.g. POS Tagging

15 jun, 2017 lgsoft:nlp:lstm:pushpak 8

Purchased Videocon machine

VBD NNP NN

I

h0 h1

o1 o2 o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis

15 jun, 2017 9 lgsoft:nlp:lstm:pushpak

I

h0 h1

o1 o2 o3 o4

c2

a21 a22
a23

a24

like

h2

15 jun, 2017 10 lgsoft:nlp:lstm:pushpak

I

h0 h1

o1 o2 o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

15 jun, 2017 11 lgsoft:nlp:lstm:pushpak

I

h0 h1

o1 o2 o3 o4

c4

a41

a42
a43

a44

like the

h3 h2

camera

h4

15 jun, 2017 12 lgsoft:nlp:lstm:pushpak

I

h0 h1

o1 o2 o3 o4

c5

a51

a52
a53

a54

like the

h3 h2

camera <EOS
>

h4 h5

Positive
sentiment

15 jun, 2017 13 lgsoft:nlp:lstm:pushpak

Notation: input and state
n  xt : input at time step t
n  st : hidden state at time step t. It is the

“memory” of the network.
n  st= f(U.xt+Wst-1) U and W matrices are

learnt

n  f is Usually tanh or ReLU (approximated by
softplus)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 14

Tanh, ReLU (rectifier linear
unit) and Softplus

15 jun, 2017 lgsoft:nlp:lstm:pushpak 15

=tanh
ee
ee

xx

xx

−

−

+

−
=tanh

),0max()(xxf =

)1ln()(exxg +=

Notation: output
n  ot is the output at step t

n  For example, if we wanted to predict
the next word in a sentence it would be
a vector of probabilities across our
vocabulary

n  ot=softmax(V.st)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 16

Backpropagation through time
(BPTT algorithm)

n  The forward pass at each time step.
n 
n  The backward pass computes the error

derivatives at each time step.

n  After the backward pass we add
together the derivatives at all the
different times for each weight.

15 jun, 2017 17 lgsoft:nlp:lstm:pushpak

A recurrent net for binary
addition
•  Two input units and one output

unit.
•  Given two input digits at each

time step.
•  The desired output at each time

step is the output for the column
that was provided as input two
time steps ago.
–  It takes one time step to

update the hidden units
based on the two input
digits.

–  It takes another time step for
the hidden units to cause the
output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1

time

15 jun, 2017 18 lgsoft:nlp:lstm:pushpak

The connectivity of the
network

•  The input units have
feed forward
connections

•  Allow them to vote
for the next hidden
activity pattern.

3 fully interconnected hidden
units

15 jun, 2017 19 lgsoft:nlp:lstm:pushpak

What the network learns
n  Learns four distinct patterns of activity for the

3 hidden units.

n  Patterns correspond to the nodes in the finite
state automaton

n  Nodes in FSM are like activity vectors

n  The automaton is restricted to be in exactly
one state at each time

n  The hidden units are restricted to have exactly
one vector of activity at each time.

15 jun, 2017 20 lgsoft:nlp:lstm:pushpak

Recall: Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

15 jun, 2017 21 lgsoft:nlp:lstm:pushpak

The problem of exploding or
vanishing gradients

–  If the weights are small, the gradients shrink
exponentially

–  If the weights are big the gradients grow
exponentially.

•  Typical feed-forward neural nets can cope with
these exponential effects because they only
have a few hidden layers.

15 jun, 2017 22 lgsoft:nlp:lstm:pushpak

LSTM

(Ack: Lecture notes of Taylor
Arnold, Yale and

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 23

LSTM: a variation of vanilla
RNN

15 jun, 2017 lgsoft:nlp:lstm:pushpak 24

Vanilla RNN

LSTM: complexity within the
block

15 jun, 2017 lgsoft:nlp:lstm:pushpak 25

Central idea

n  Memory cell maintains its state over
time

n  Non-linear gating units regulate the
information flow into and out of the cell

15 jun, 2017 lgsoft:nlp:lstm:pushpak 26

A simple line diagram for
LSTM

15 jun, 2017 lgsoft:nlp:lstm:pushpak 27

Stepping through Constituents
of LSTM

15 jun, 2017 lgsoft:nlp:lstm:pushpak 28

Again: Example of Refrigerator
complaint

n  Visiting service person is becoming
rarer and rarer,
 (ambiguous! ‘visit to service person’ OR ‘visit by service

 person’?)
 …

n  and I am regretting/appreciating
my decision to have bought the
refrigerator from this company
 (appreciating à ‘to’; regretting à ‘by’)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 29

Possibilities
n  ‘Visiting’: ‘visit to’ or ‘visit

by’ (ambiguity, syntactic opacity)

n  Problem: solved or unsolved (not
known, semantic opacity)

n  ‘Appreciating’/’Regretting’: transparent;
available on the surface

15 jun, 2017 lgsoft:nlp:lstm:pushpak 30

4 possibilities (states)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 31

Clue-1 Clue-2 Problem Sentiment

Visit to service
person

Appreciating solved Positive

Visit to service
person

Appreciating Not solved Not making
sense!
Incoherent

Visit to service
person

Regretting solved May be reverse
sarcasm

Visit to service
person

Regretting Not solved Negative

4 possibilities (states)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 32

Clue-1 Clue-2 Problem Sentiment

Visit by service
person

Appreciating solved Positive

Visit by service
person

Appreciating Not solved May be sarcastic

Visit by service
person

Regretting solved May be reverse
sarcasm

Visit by service
person

Regretting Not solved Negative

LSTM constituents: Cell State

15 jun, 2017 lgsoft:nlp:lstm:pushpak 33

The first and foremost component- the controller of flow of information

LSTM constituents- Forget
Gate

15 jun, 2017 lgsoft:nlp:lstm:pushpak 34

Helps forget irrelevant information. Sigmoid function. Output is between
0 and 1. Because of product, close to 1 will be full pass, close to 0 no pass

LSTM constituents: Input gate

15 jun, 2017 lgsoft:nlp:lstm:pushpak 35

tanh produces a cell state vector; multiplied with input gate which again
0-1 controls what and how much input goes FOWARD

Cell state operation

15 jun, 2017 lgsoft:nlp:lstm:pushpak 36

15 jun, 2017 lgsoft:nlp:lstm:pushpak 37

Finally

15 jun, 2017 lgsoft:nlp:lstm:pushpak 38

Better picture (the one we
started with)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 39

Another picture

15 jun, 2017 lgsoft:nlp:lstm:pushpak 40

LSTM schematic greff et al. LSTM a Space
Odyssey, arxiv 2015

15 jun, 2017 lgsoft:nlp:lstm:pushpak 41

Legend

15 jun, 2017 lgsoft:nlp:lstm:pushpak 42

Required mathematics

15 jun, 2017 lgsoft:nlp:lstm:pushpak 43

Training of LSTM

15 jun, 2017 lgsoft:nlp:lstm:pushpak 44

Many layers and gates

n  Though complex, in principle possible to
train

n  Gates are also sigmoid or tanh networks

n  Remember the FUNDAMENTAL
backpropagation rule

15 jun, 2017 lgsoft:nlp:lstm:pushpak 45

General Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

15 jun, 2017 46 lgsoft:nlp:lstm:pushpak

LSTM tools

n  Tensorflow, Ocropus, RNNlib etc.

n  Tools do everything internally

n  Still insights and concepts are inevitable

15 jun, 2017 lgsoft:nlp:lstm:pushpak 47

LSTM applications

15 jun, 2017 lgsoft:nlp:lstm:pushpak 48

Many applications
n  Language modeling (The tensorflow tutorial on PTB is a good

place to start Recurrent Neural Networks) character and word
level LSTM’s are used

n  Machine Translation also known as sequence to sequence
learning (https://arxiv.org/pdf/1409.3215.pdf)

n  Image captioning (with and without attention,
https://arxiv.org/pdf/1411.4555v...)

n  Hand writing generation (http://arxiv.org/pdf/1308.0850v5...)
n  Image generation using attention models - my favorite (

https://arxiv.org/pdf/1502.04623...)
n  Question answering (http://www.aclweb.org/anthology/...)
n  Video to text (https://arxiv.org/pdf/1505.00487...)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 49

Deep Learning Based Seq2Seq
Models and POS Tagging

Acknowledgement: Anoop Kunchukuttan, PhD Scholar, IIT Bombay

15 jun, 2017 50 lgsoft:nlp:lstm:pushpak

So far we are seen POS tagging as a sequence labelling task

For every element, predict the tag/label (using
function f)

I read the book

f f f f

PRP VB DT NN

●  Length of output
sequence is same as
input sequence
●  Prediction of tag at

time t can use only the
words seen till time t

15 jun, 2017 51 lgsoft:nlp:lstm:pushpak

I read the book

PRP VB DT NN

F

We can also look at POS tagging as a sequence to sequence transformation
problem

Read the entire sequence and predict the output sequence (using
function F)

●  Length of output
sequence need not be
the same as input
sequence
●  Prediction at any time

step t has access to the
entire input
●  A more general

framework than
sequence labelling

15 jun, 2017 52 lgsoft:nlp:lstm:pushpak

Sequence to Sequence transformation is a more general framework than
sequence labelling

●  Many other problems can be expressed as sequence to sequence

transformation

○  e.g. machine translation, summarization, question answering, dialog

●  Adds more capabilities which can be useful for problems like MT:

○  many → many mappings: insertion/deletion to words, one-one

mappings

○  non-monotone mappings: reordering of words

●  For POS tagging, these capabilites are not required

How does a sequence to sequence model work? Let’s see two paradigms

15 jun, 2017 53 lgsoft:nlp:lstm:pushpak

Encode - Decode Paradigm

Use two RNN networks: the encoder and
the decoder

PRP DT VB NN

I read the book

s1 s1 s3 s0

s4

h0 h1 h2 h3

(1) Encoder
processes one
sequences at a

time

(4) Decoder
generates one
element at a

time

(2) A representation
of the sentence is

generated

(3) This is used
to initialize the
decoder state

Encoding

Decodin
g

<EO
S>

h4

(5)… continue till
end of sequence
tag is generated

15 jun, 2017 54 lgsoft:nlp:lstm:pushpak

This approach reduces the entire sentence representation to a
single vector

Two problems with this design choice:

●  This is not sufficient to represent to capture all the syntactic and
semantic complexities of a sentence
○  Solution: Use a richer representation for the sentences

●  Problem of capturing long term dependencies: The decoder RNN will
not be able to able to make use of source sentence representation after
a few time steps
○  Solution: Make source sentence information when making the next

prediction
○  Even better, make RELEVANT source sentence information

available

These solutions motivate the next paradigm
15 jun, 2017 55 lgsoft:nlp:lstm:pushpak

Encode - Attend - Decode Paradigm

I read the book

s1 s2 s3 s0

s4

Annotation
vectors

Represent the source
sentence by the set of
output vectors from the
encoder

Each output vector at time t
is a contextual
representation of the input
at time t

Note: in the encoder-
decode paradigm, we
ignore the encoder outputs

Let’s call these encoder
output vectors annotation
vectors

15 jun, 2017 56 lgsoft:nlp:lstm:pushpak

How should the decoder use the set of annotation vectors while predicting
the next character?

Key Insight:
(1) Not all annotation vectors are equally important for prediction of the next

element
(2) The annotation vector to use next depends on what has been generated so

far by the decoder

eg. To generate the 3rd POS tag, the 3rd annotation vector (hence 3rd word) is
most important

One way to achieve this:
Take a weighted average of the annotation vectors, with more weight to
annotation vectors which need more focus or attention

This averaged context vector is an input to the decoder

For generation of ith output character:
ci : context vector
aij : annotation weight for the jth annotation
vector
oj: jth annotation vector

15 jun, 2017 57 lgsoft:nlp:lstm:pushpak

PRP

h0 h1

o1 o2 o3 o4

c1

a11 a12 a13

a14

Let’s see an example of how the attention
mechanism works

15 jun, 2017 58 lgsoft:nlp:lstm:pushpak

PRP

h0 h1

o1 o2 o3 o4

c2

a21 a22
a23

a24

VB

h2

15 jun, 2017 59 lgsoft:nlp:lstm:pushpak

PRP

h0 h1

o1 o2 o3 o4

c3

a31 a32 a33

a34

VB DT

h3
h2

15 jun, 2017 60 lgsoft:nlp:lstm:pushpak

PRP

h0 h1

o1 o2 o3 o4

c4

a41

a42
a43

a44

VB DT

h3 h2

NN

h4

15 jun, 2017 61 lgsoft:nlp:lstm:pushpak

PRP

h0 h1

o1 o2 o3 o4

c5

a51

a52
a53

a54

VB DT

h3 h2

NN <EOS
>

h4 h5

15 jun, 2017 62 lgsoft:nlp:lstm:pushpak

But we do not know the attention weights?
How do we find them?

Let the training data help you decide!!

Idea: Pick the attention weights that maximize the POS
tagging accuracy

 (more precisely, decrease training data
loss) Have an attention function that predicts the attention weights:

aij = A(oj,hi;o)

A could be implemented as a feedforward network which is a component of the
overall network

Then training the attention network with the rest of the network ensures that
the attention weights are learnt to minimize the translation loss

15 jun, 2017 63 lgsoft:nlp:lstm:pushpak

OK, but do the attention weights actually show focus on
certain parts?

Here is an example of how attention weights represent a soft alignment for
machine translation

15 jun, 2017 64 lgsoft:nlp:lstm:pushpak

Let’s go back to the encoder. What type of encoder cell should we use there?

●  Basic RNN: models sequence history by maintaining state information
○  But, cannot model long range dependencies

●  LSTM: can model history and is better at handling long range dependencies

The RNN units model only the sequence seen so far, cannot see the sequence
ahead
●  Can use a bidirectional RNN/LSTM
●  This is just 2 LSTM encoders run from opposite ends of the sequence and

resulting output vectors are composed

Both types of RNN units process the sequence sequentially, hence parallelism is
limited

Alternatively, we can use a CNN

●  Can operate on a sequence in parallel
●  However, cannot model entire sequence history
●  Model only a short local context. This may be sufficient for some

applications or deep CNN layers can overcome the problem

15 jun, 2017 65 lgsoft:nlp:lstm:pushpak

Convolutional Neural Network
(CNN)

15 jun, 2017 lgsoft:nlp:lstm:pushpak 66

CNN= feedforward +
recurrent!
n  Whatever we learnt so far in FF-BP is useful

to understand CNN
n  So also is the case with RNN (and LSTM)
n  Input divided into regions and fed forward
n  Window slides over the input: input changes,

but ‘filter’ parameters remain same
n  That is RNN

15 jun, 2017 lgsoft:nlp:lstm:pushpak 67

Remember Neocognitron

15 jun, 2017 68 lgsoft:nlp:lstm:pushpak

15 jun, 2017 69 lgsoft:nlp:lstm:pushpak

Convolution

15 jun, 2017 lgsoft:nlp:lstm:pushpak 70

3

2

4

3

2

4

3 4

§  Matrix on the left represents an
black and white image.

§  Each entry corresponds to one
pixel, 0 for black and 1 for white
(typically it’s between 0 and 255
for grayscale images).

§  The sliding window is called
a kernel, filter, or feature detector.

§  Here we use a 3×3 filter, multiply
its values element-wise with the
original matrix, then sum them up.

§  To get the full convolution we do
this for each element by sliding the
filter over the whole matrix.

CNN architecture

n  Several layers of convolution with tanh or ReLU
applied to the results

n  In a traditional feedforward neural network we
connect each input neuron to each output neuron in
the next layer. That’s also called a fully connected
layer, or affine layer.

n  In CNNs we use convolutions over the input layer to
compute the output.

n  This results in local connections, where each region
of the input is connected to a neuron in the output

15 jun, 2017 lgsoft:nlp:lstm:pushpak 71

Learning in CNN
n  Automatically learns the values of

its filters
n  For example, in Image Classification

learn to
n  detect edges from raw pixels in the first layer,
n  then use the edges to detect simple shapes in the

second layer,
n  and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.
n  The last layer is then a classifier that uses

these high-level features.

15 jun, 2017 lgsoft:nlp:lstm:pushpak 72

Remember Neocognitron

15 jun, 2017 73 lgsoft:nlp:lstm:pushpak

15 jun, 2017 74 lgsoft:nlp:lstm:pushpak

What about NLP and CNN?

n  Natural Match!

n  NLP happens in
layers

15 jun, 2017 lgsoft:nlp:lstm:pushpak 75

NLP: multilayered,
multidimensional

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased
Complexity
Of
Processing

Algorithm

Problem

Language
Hindi

Marathi

English

French
Morph
Analysis

Part of Speech
Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP
Trinity

22 Apr, 2017 LG:nlp:pos:pushpak 76

NLP layers and CNN

n  Morph layer à
n  POS layer à
n  Parse layer à
n  Semantics layer

15 jun, 2017 lgsoft:nlp:lstm:pushpak 77

15 jun, 2017 78 lgsoft:nlp:lstm:pushpak

15 jun, 2017 lgsoft:nlp:lstm:pushpak 79

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Pooling

n  Gives invariance in translation, rotation
and scaling

n  Important for image recognition

n  Role in NLP?

15 jun, 2017 lgsoft:nlp:lstm:pushpak 80

Input matrix for CNN: NLP

15 jun, 2017 lgsoft:nlp:lstm:pushpak 81

§ “image” for NLP ßà word
vectors
§ in the rows

§ For a 10 word sentence using a
100-dimensional Embedding,

§ we would have a 10×100 matrix
as our input

3

2

4

3

2

4

3 4

15 jun, 2017 lgsoft:nlp:lstm:pushpak 82

Credit: Denny Britz

CNN for NLP

CNN Hyper parameters

n  Narrow width vs. wide width
n  Stride size
n  Pooling layers
n  Channels

15 jun, 2017 lgsoft:nlp:lstm:pushpak 83

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya,
Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm
Classification Using Convolutional Neural Network, ACL 2017, Vancouver, Canada,
July 30-August 4, 2017.

15 jun, 2017 lgsoft:nlp:lstm:pushpak 84

Learning Cognitive Features from Gaze
Data for Sentiment and Sarcasm
Classification

n  In complex classification tasks like
sentiment analysis and sarcasm
detection, even the extraction and
choice of features should be delegated
to the learning system

n  CNN learns features from both gaze
and text and uses them to classify the
input text

15 jun, 2017 lgsoft:nlp:lstm:pushpak 85

