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Motivation for DL-NLP 
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Text classification using Deep 
NN 
n  Text classification at the heart of many NLP 

tasks 
n  Soft decisions needed 
n  A piece of text may belong to multiple classes 

n  “Recent curb on H1-B in the US visas- 
promised in Trump’s election speeches- are 
causing IT industries to re-orient their 
business plan” 

n  Belongs to BOTH economics and Politics- 
more to former 
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An example SMS complaint 

n  I have purchased a 80 litre Videocon 
fridge about 4 months ago when the 
freeze go to sleep that time compressor 
give a sound (khat khat khat khat ....) 
what is possible fault over it is normal I 
can't understand please help me give 
me a suitable answer. 
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Significant words (in red): 
after stop word removal 

n  I have purchased a 80 litre Videocon 
fridge about 4 months ago when the 
freeze go to sleep that time compressor 
give a sound (khat khat khat khat ....) 
what is possible fault over it is normal I 
can't understand please help me give 
me a suitable answer. 
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SMS classification 
Action complaint 

Hidden  
neurons 

Emergency 

-1 

x1 x2 

-1 1.5 
1.5 
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SMS feature vector: input neurons 



Basic Neural Models 

n  Precursor to Deep Learning 
n  Models 

n  Perceptron and PTA 
n  Feedforward Network and Backpropagation 
n  Boltzmann Machine 
n  Self Organization and Kohonen’s Map 
n  Neocognitron 
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Perceptron 
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The Perceptron Model 
 
  

Output = y 

wn 
Wn-1 

w1 

Xn-1 

x1 

Threshold = θ  
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θ 

1 
y 

Step function / Threshold function 
y  = 1 for  Σwixi  >=θ 
           =0 otherwise 
 

Σwixi   

12 June, 2017 10 LG:nlp:DL:pushpak 



Perceptron Training Algorithm 
(PTA) 

Preprocessing: 
1.  The computation law is modified to 

   y = 1  if  ∑wixi > θ 
   y = o  if  ∑wixi < θ 

 
     à 

.   .   .  

θ, ≤ 

w1 w2 wn 

x1 x2 x3 xn 

.   .   .  

θ, < 

w1 w2 w3 wn 

x1 x2 x3 xn 

w3 
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PTA – preprocessing cont… 

2. Absorb θ as a weight 
 
 

     à 
 
 
 
3. Negate all the zero-class examples 

.   .   .  

θ 

w1 w2 w3 wn 

x2 x3 xn x1 

w0=θ 

x0= -1 

.   .   .  

θ 

w1 w2 w
3 

wn 

x2 x3 xn 
x1 
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Example to demonstrate 
preprocessing 

n  OR perceptron 
1-class  <1,1> , <1,0> , <0,1> 
0-class  <0,0> 
 
Augmented x vectors:- 
1-class  <-1,1,1> , <-1,1,0> , <-1,0,1> 
0-class  <-1,0,0> 
 
Negate 0-class:-   <1,0,0> 
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Example to demonstrate 
preprocessing cont.. 

Now the vectors are 
     x0  x1 x2 

X1  -1   0   1 
X2  -1   1   0 
X3  -1   1   1 
X4   1   0   0 
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Perceptron Training Algorithm 

1.  Start with a random value of w 
 ex: <0,0,0…> 

2.  Test for wxi > 0 
      If the test succeeds for i=1,2,…n 

  then return w 
3.  Modify w, wnext = wprev + xfail 
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Convergence of PTA 
n  Statement: 

   Whatever be the initial choice of weights and 
whatever be the vector chosen for testing, PTA 
converges if the vectors are from a linearly 
separable function. 
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Feedforward Network and 
Backpropagation 

12 June, 2017 17 LG:nlp:DL:pushpak 



Example - XOR  

w2=1 w1=1 
θ  = 0.5 

x1x2 x1x2 

-1 

x1 x2 

-1 1.5 
1.5 

1 1 
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Gradient Descent Technique 

n  Let E be the error at the output layer 

n  ti = target output; oi = observed output 

n  i is the index going over n neurons in the 
outermost layer 

n  j is the index going over the p patterns (1 to p) 
n  Ex: XOR:–  p=4 and n=1 

∑∑
= =

−=
p

j

n

i
jii otE

1 1

2)(
2
1
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Weights in a FF NN 

n  wmn is the weight of the 
connection from the nth neuron 
to the mth neuron 

n  E vs        surface is a complex 
surface in the space defined by 
the weights wij 

n          gives the direction in 
which a movement of the 
operating point in the wmn co-
ordinate space will result in 
maximum decrease in error 

W

m

n 

wmn 

mnw
E

δ
δ

−

mn
mn w

Ew
δ
δ

−∝Δ
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Backpropagation algorithm 

n  Fully connected feed forward network 
n  Pure FF network (no jumping of 

connections over layers) 

Hidden layers 

Input layer            
(n i/p neurons) 

Output layer    
(m o/p 
neurons) 

j

i
wji 

…. 

…. 

…. 

…. 
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Gradient Descent Equations 
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Backpropagation – for 
outermost layer 

ijjjjji
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Backpropagation for hidden 
layers 

Hidden layers 

Input layer            
(n i/p neurons) 

Output layer    
(m o/p 
neurons) j

i

…. 

…. 

…. 

…. 

k

δk is propagated backwards to find value of δj 
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Backpropagation – for hidden 
layers 
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Cause of Vanishing  
Gradient problem!  



General Backpropagation Rule 

ijj
k

kkj ooow )1()(
layernext 

−= ∑
∈

δ

)1()( jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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How does it work? 
n  Input propagation forward and error 

propagation backward (e.g. XOR) 

w2=1 w1=1 
θ  = 0.5 

x1x2 x1x2 

-1 

x1 x2 

-1 1.5 
1.5 

1 1 
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Recurrent Neural Network 

Acknowledgement: 
1. http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/ 

 By Denny Britz 
2. Introduction to RNN by Jeffrey Hinton 
http://www.cs.toronto.edu/~hinton/csc2535/
lectures.html   
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Sequence processing m/c 
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E.g. POS Tagging 
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Purchased Videocon machine 

VBD NNP NN 



I 

h0 h1 

o1 o2 o3 o4 

c1 

a11  a12 a13 

a14 

Decision on a piece of text 

E.g. Sentiment Analysis 
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I 

h0 h1 

o1 o2 o3 o4 

c2 

a21  a22 
a23 

a24 

like 

h2 
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I 

h0 h1 

o1 o2 o3 o4 

c3 

a31  a32 a33 

a34 

like the 

h3 
h2 
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I 

h0 h1 

o1 o2 o3 o4 

c4 

a41  

a42 
a43 

a44 

like the 

h3 h2 

camera 

h4 
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I 

h0 h1 

o1 o2 o3 o4 

c5 

a51  

a52 
a53 

a54 

like the 

h3 h2 

camera <EOS
> 

h4 h5 

Positive  
sentiment 
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Back to RNN model 

12 June, 2017 LG:nlp:DL:pushpak 36 



Notation: input and state 
n  xt is the input at time step t. For example,  

could be a one-hot vector corresponding 
to the second word of a sentence.  

n  st  is the hidden state at time step t. It is the 
“memory” of the network. 

n  st= f(U.xt+Wst-1) U and W matrices are 
learnt 

n  f  is a function of the input and the previous 
state 

n  Usually tanh or ReLU (approximated by 
softplus) 
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Tanh, ReLU (rectifier linear 
unit) and Softplus 
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Notation: output 
n  ot is the output at step t 

n  For example, if we wanted to predict 
the next word in a sentence it would be 
a vector of probabilities across our 
vocabulary 

n  ot=softmax(V.st) 
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Operation of RNN 

n  RNN shares the same parameters (U, V, 
W) across all steps 

n  Only the input changes 

n  Sometimes the output at each time step 
is not needed: e.g., in sentiment 
analysis 

n  Main point: the hidden states !! 
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The equivalence between feedforward nets and recurrent 
nets 

w1           w4 

w2          w3 

w1    w2  W3     W4 

time=
0 

time=
2 

time=
1 

time=
3 

Assume that there is a time 
delay of 1 in using each 
connection. 

The recurrent net is just a 
layered net that keeps 
reusing the same weights. 

w1    w2  W3     W4 

w1    w2  W3     W4 
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Reminder: Backpropagation with weight 
constraints 
•  Linear constraints 

between the weights. 

•  Compute the gradients 
as usual 

•  Then modify the 
gradients so that they 
satisfy the constraints. 

•  So if the weights started 
off satisfying the 
constraints, they will 
continue to satisfy 
them. 

21
21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂

∂
+

∂

∂

∂

∂

∂

∂

Δ=Δ

=

Example 
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Backpropagation through time 
(BPTT algorithm) 

n  The forward pass at each time step. 
n    
n  The backward pass computes the error 

derivatives at each time step.  

n  After the backward pass we add 
together the derivatives at all the 
different times for each weight. 
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Binary addition using recurrent 
network (Jeffrey Hinton’s lecture)  

•  Feed forward n/w 

•  But problem of variable 
length input 

00100110 10100110 

11001100 

hidden units 
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The algorithm for binary addition 

no carry 
print 1 

carry 
print 1 

no carry 
print 0 

carry 
print 0 

1 
1 

1 
0 

1 
0 

1 
0 

1 
0 

0 
1 

0 
1 

0 
1 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 

1 
1 

This is a finite state automaton. It decides what transition to make by looking at the next 
column.    It prints after making the transition. It moves from right to left over the two 
input numbers. 

1 
1 
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A recurrent net for binary 
addition 
•  Two input units and one output 

unit. 
•  Given two input digits at each 

time step. 
•  The desired output at each time 

step is the output for the column 
that was provided as input two 
time steps ago. 

–  It takes one time step to 
update the hidden units 
based on the two input 
digits. 

–  It takes another time step for 
the hidden units to cause the 
output. 

 

0 0 1 1 0 1 0 0 

0 1 0 0 1 1 0 1 

1 0 0 0 0 0 0 1 

time 
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The connectivity of the 
network 

•  The input units have 
feed forward 
connections 

•  Allow them to vote 
for the next hidden 
activity pattern. 

3 fully interconnected hidden 
units 
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What the network learns 
n  Learns four distinct patterns of activity for the 

3 hidden units.  

n  Patterns correspond to the nodes in the finite 
state automaton 

n  Nodes in FSM are like activity vectors 

n  The automaton is restricted to be in exactly 
one state at each time 

n  The hidden units are restricted to have exactly 
one vector of activity at each time. 
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The backward pass is linear 
n  The backward pass, is 

completely linear. If you 
double the error derivatives at 
the final layer, all the error 
derivatives will double.  

n  The forward pass determines 
the slope of the linear function 
used for backpropagating 
through each neuron. 
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Recall: Backpropagation Rule 

ijj
k

kkj ooow )1()(
layernext 

−= ∑
∈

δ

)1()( jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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The problem of exploding or 
vanishing gradients (1/2) 

–  If the weights are  small, the gradients shrink 
exponentially 

–  If the weights are big the gradients grow 
exponentially. 

•  Typical feed-forward neural nets can cope with 
these exponential effects because they only 
have a few hidden layers. 
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The problem of exploding or 
vanishing gradients (2/2) 
•  In an RNN trained on long sequences (e.g. 

sentence with 20 words) the gradients can 
easily explode or vanish. 

–  We can avoid this by initializing the weights very 
carefully. 

•  Even with good initial weights, its very hard 
to detect that the current target output 
depends on an input from many time-steps 
ago. 

–  So RNNs have difficulty dealing with long-range 
dependencies. 
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Vanishing/Exploding gradient: 
solution 

n  LSTM 
n  Error becomes “trapped” in the memory 

portion of the block 
n  This is referred to as an "error carousel“ 
n  Continuously feeds error back to each 

of the gates until they become trained 
to cut off the value 

n  (to be expanded) 
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Boltzmann Machine 
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Illustration of the basic idea of 
Boltzmann Machine 

n  Illustrative task: To learn the 
identity function 

n  The setting is probabilistic, x 
= 1 or  
 x = -1, with uniform 
probability, i.e., 
n  P(x=1) = 0.5, P(x=-1) = 

0.5 
n  For, x=1, y=1 with P=0.9 
n  For, x=-1, y=-1 with P=0.9 

w12 1 
2 

x 
y 

x y 
1 
-1 

1 
-1 
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Illustration of the basic idea of 
Boltzmann Machine (contd.) 

n  Let α = output neuron states 
   β = input neuron states 
  Pα|β = observed probability 
distribution 
  Qα|β = desired probability distribution 
  Qβ = probability distribution on input 

  states β 
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Illustration of the basic idea of 
Boltzmann Machine (contd.) 

n  The divergence D is given as: 
D = ∑α∑β Qα|β Qβ ln Qα|β / Pα|β 
called KL divergence formula 
D = ∑α∑β Qα|β Qβ ln Qα|β / Pα|β 

 >= ∑α∑β Qα|β Qβ ( 1 - Pα|β /Qα|β) 
 >= ∑α∑β Qα|β Qβ - ∑α∑β Pα|β Qβ 
 >= ∑α∑β Qαβ - ∑α∑β Pαβ   
   {Qαβ and Pαβ are joint distributions}  
  >= 1 – 1 = 0 
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Precursor to 
Softmax  
Layer 
 



Gradient descent for finding the 
weight change rule 

P(Sα) ∞ exp(-E(Sα)/T) 
 
P(Sα) = (exp(-E(Sα)/T)) / (∑β є all statesexp(-E(Sβ)/T) 
 
ln(P(Sα))= (-E(Sα)/T)-ln Z 
 
D= ∑α∑βQα|β Qβ ln (Qα|β / Pα|β) 
 
Δwij= η (δD/δwij); gradient descent 
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Calculating gradient: 1/2 

δD / δwij = δ/δwij [∑α∑β Qα|β Qβ ln (Qα|β / Pα|β)] 
        = δ/δwij [∑α∑β Qα|β Qβ ln Qα|β 
            - ∑α∑β Qα|β Qβ ln Pα|β] 

 
δ(ln Pα|β) /δwij = δ/δwij [-E(Sα)/T– lnZ] 
 
Z = ∑βexp(-E(Sβ))/T 

Constant 
With respect 
To wij 
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Calculating gradient: 2/2 
δ [-E(Sα)/T] /δwij = (-1/T) δ/δwij [ - ∑i ∑j>i wij si 

sj ] 
     = (-1/T)[-sisj|α] 
     = (1/T)[sisj|α] 

 
δ (ln Z)/δwij=(1/Z)(δZ/δwij) 
 
Z= ∑βexp(-E(Sβ)/T) 
 
δZ/δwij= ∑β[exp(-E(Sβ)/T)(δ(-E(Sβ/T)/δwij )] 

    = (1/T) ∑βexp(-E(Sβ)/T).sisj|β 12 June, 2017 60 LG:nlp:DL:pushpak 



Final formula for Δwij  

 
 
Δwij= [1/T/ [sisj|α – (1/Z) ∑βexp(-E(Sβ)/

T).sisj|β 
      = [1/T][sisj|α – ∑βP(Sβ).sisj|β] 
 Expectation of ith and jth 

Neurons being on together 
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Issue of Hidden Neurons 

n  Boltzmann machines  
n  can come with hidden neurons 
n  are equivalent to a Markov Random field 
n  with hidden neurons are like a Hidden 

Markov Machines 

n  Training a Boltzmann machine is 
equivalent to running the Expectation 
Maximization Algorithm 
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Use of Boltzmann machine 

n  Computer Vision 
n  Understanding scene involves what is 

called “Relaxation Search” which gradually 
minimizes a cost function with progressive 
relaxation on constraints 

n  Boltzmann machine has been found to 
be slow in the training 
n  Boltzmann training is NP-hard. 
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Questions 

n  Does the Boltzmann machine reach the global 
minimum? What ensures it? 

n  Why is simulated annealing applied to 
Boltzmann machine? 
n  local minimum à increase T à n/w runs 
àgradually reduce T à reach global minimum. 

n  Understand the effect of varying T 
n  Higher T à small difference in energy states 

ignored, convergence to local minimum fast. 
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Self Organization and 
Kohonen Net 
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Mapping of Brain 

Side areas 
For auditory information processing 

Back of brain( vision) 

Lot of resilience: 
 
Visual and auditory 
areas can do each 
other’s job  
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Character Recognition:  
A,  A, A,  , 

, 
O/p grid 

. . . .  I/p neuron 
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Kohonen Net 
•  Self Organization or Kohonen network fires a 
group of neurons instead of a single one.  
•  The group “some how” produces a “picture” of 
the cluster. 
•  Fundamentally SOM is competitive learning.  
•  But weight changes are incorporated on a 
neighborhood.  
•  Find the winner neuron, apply weight change for 
the winner and its “neighbors”. 
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Neurons on the contour are the 
“neighborhood” neurons. 

Winner 
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Weight change rule for SOM 
 

W(n+1)    = W(n)  + η(n) (I(n) – W(n)) 
                            P+δ(n)           P+δ(n)                       P+δ(n) 

Neighborhood: function of n  

Learning rate: function of n 
δ(n) is a decreasing function of n 
η(n) learning rate is also a decreasing function of 
n 
0 < η(n) < η(n –1 ) <=1 
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Pictorially 
 
 

Winner 
δ(n) 

. . . .  

Convergence for kohonen not 
proved except for uni-
dimension 
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…  

… … . 

P neurons o/p layer 

n neurons 

Clusters: 

A A : 

A 

Wp 

B : 
C : 

: 
 :  
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Clustering Algos 
 

1. Competitive learning 
2. K – means clustering 
3. Counter Propagation 
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K – means clustering 
K o/p neurons are required from the knowledge 
of K clusters being present. 

 
 

26 neurons 

  Full connection 

n neurons 

…… 

…… 
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Steps  
 

1. Initialize the weights randomly. 
2. Ik is the vector presented at kth iteration. 
 
3. Find W* such that  

 |w* - Ik| < |wj - Ik| for all j  
4. make W*(new) = W* (old) + η(Ik - w* ). 
 
5 k ß k +1. 
 
6. Go to 2 until the error is below a threshold. 
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Two part assignment 
 

Supervised  
 
 

Hidden layer 
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A1 A2 A3 

4 I/p neurons 
A4 

Cluster Discovery By  
SOM/Kohenen Net 
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NeoCognitron 
(Fukusima et. al., 1980) 
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Hierarchical feature extraction 
based 
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S-Layer 

n  Each S-layer in the neocognitron is 
intended for extraction of features 
from corresponding stage of hierarchy.  

n  Particular S-layers are formed by 
distinct number of S-planes. Number of 
these S-planes depends on the number 
of extracted features.  
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V-Layer 

n  Each V-layer in the neocognitron is 
intended for obtaining of 
informations about average 
activity in previous C-layer (or input 
layer).  

n  Particular V-layers are always formed by 
only one V-plane.  
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C-Layer 

n  Each C-layer in the neocognitron is 
intended for ensuring of tolerance of 
shifts of features extracted in 
previous S-layer.  

n  Particular C-layers are formed by 
distinct number of C-planes. Their 
number depends on the number of 
features extracted in the previous S-
layer.  
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Hands on for afternoon 

n  Implement the binary adder on RNN 

n  Create a FF-BP POS tagger  
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