
Natural Language Processing

Pushpak Bhattacharyya
CSE Dept,

IIT Patna and Bombay

Introduction to DL-NLP

12 June, 2017 LG:nlp:DL:pushpak 1

Motivation for DL-NLP

12 June, 2017 LG:nlp:DL:pushpak 2

Text classification using Deep
NN
n  Text classification at the heart of many NLP

tasks
n  Soft decisions needed
n  A piece of text may belong to multiple classes

n  “Recent curb on H1-B in the US visas-
promised in Trump’s election speeches- are
causing IT industries to re-orient their
business plan”

n  Belongs to BOTH economics and Politics-
more to former

12 June, 2017 LG:nlp:DL:pushpak 3

An example SMS complaint

n  I have purchased a 80 litre Videocon
fridge about 4 months ago when the
freeze go to sleep that time compressor
give a sound (khat khat khat khat)
what is possible fault over it is normal I
can't understand please help me give
me a suitable answer.

12 June, 2017 LG:nlp:DL:pushpak 4

Significant words (in red):
after stop word removal

n  I have purchased a 80 litre Videocon
fridge about 4 months ago when the
freeze go to sleep that time compressor
give a sound (khat khat khat khat)
what is possible fault over it is normal I
can't understand please help me give
me a suitable answer.

12 June, 2017 LG:nlp:DL:pushpak 5

SMS classification
Action complaint

Hidden
neurons

Emergency

-1

x1 x2

-1 1.5
1.5

12 June, 2017 6 LG:nlp:DL:pushpak

SMS feature vector: input neurons

Basic Neural Models

n  Precursor to Deep Learning
n  Models

n  Perceptron and PTA
n  Feedforward Network and Backpropagation
n  Boltzmann Machine
n  Self Organization and Kohonen’s Map
n  Neocognitron

12 June, 2017 LG:nlp:DL:pushpak 7

Perceptron

12 June, 2017 8 LG:nlp:DL:pushpak

The Perceptron Model

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

12 June, 2017 9
LG:nlp:DL:pushpak

θ

1
y

Step function / Threshold function
y = 1 for Σwixi >=θ
 =0 otherwise

Σwixi

12 June, 2017 10 LG:nlp:DL:pushpak

Perceptron Training Algorithm
(PTA)

Preprocessing:
1.  The computation law is modified to

 y = 1 if ∑wixi > θ
 y = o if ∑wixi < θ

 à

. . .

θ, ≤

w1 w2 wn

x1 x2 x3 xn

. . .

θ, <

w1 w2 w3 wn

x1 x2 x3 xn

w3

12 June, 2017 11 LG:nlp:DL:pushpak

PTA – preprocessing cont…

2. Absorb θ as a weight

 à

3. Negate all the zero-class examples

. . .

θ

w1 w2 w3 wn

x2 x3 xn x1

w0=θ

x0= -1

. . .

θ

w1 w2 w
3

wn

x2 x3 xn
x1

12 June, 2017 12 LG:nlp:DL:pushpak

Example to demonstrate
preprocessing

n  OR perceptron
1-class <1,1> , <1,0> , <0,1>
0-class <0,0>

Augmented x vectors:-
1-class <-1,1,1> , <-1,1,0> , <-1,0,1>
0-class <-1,0,0>

Negate 0-class:- <1,0,0>
12 June, 2017 13 LG:nlp:DL:pushpak

Example to demonstrate
preprocessing cont..

Now the vectors are
 x0 x1 x2

X1 -1 0 1
X2 -1 1 0
X3 -1 1 1
X4 1 0 0

12 June, 2017 14 LG:nlp:DL:pushpak

Perceptron Training Algorithm

1.  Start with a random value of w
 ex: <0,0,0…>

2.  Test for wxi > 0
 If the test succeeds for i=1,2,…n

 then return w
3. Modify w, wnext = wprev + xfail

12 June, 2017 15 LG:nlp:DL:pushpak

Convergence of PTA
n  Statement:

 Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA
converges if the vectors are from a linearly
separable function.

12 June, 2017 16 LG:nlp:DL:pushpak

Feedforward Network and
Backpropagation

12 June, 2017 17 LG:nlp:DL:pushpak

Example - XOR

w2=1 w1=1
θ  = 0.5

x1x2 x1x2

-1

x1 x2

-1 1.5
1.5

1 1

12 June, 2017 18 LG:nlp:DL:pushpak

Gradient Descent Technique

n  Let E be the error at the output layer

n  ti = target output; oi = observed output

n  i is the index going over n neurons in the
outermost layer

n  j is the index going over the p patterns (1 to p)
n  Ex: XOR:– p=4 and n=1

∑∑
= =

−=
p

j

n

i
jii otE

1 1

2)(
2
1

12 June, 2017 19 LG:nlp:DL:pushpak

Weights in a FF NN

n  wmn is the weight of the
connection from the nth neuron
to the mth neuron

n  E vs surface is a complex
surface in the space defined by
the weights wij

n  gives the direction in
which a movement of the
operating point in the wmn co-
ordinate space will result in
maximum decrease in error

W

m

n

wmn

mnw
E

δ
δ

−

mn
mn w

Ew
δ
δ

−∝Δ

12 June, 2017 20 LG:nlp:DL:pushpak

Backpropagation algorithm

n  Fully connected feed forward network
n  Pure FF network (no jumping of

connections over layers)

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons)

j

i
wji

….

….

….

….

12 June, 2017 21 LG:nlp:DL:pushpak

Gradient Descent Equations

i
ji

j
ji

j

th
j

ji

j

jji

ji
ji

jo
w
net

jw

j
net
E

net
w
net

net
E

w
E

w
Ew

ηδ
δ

δ
ηδ

δ
δ
δ

δ

δ

δ
δ

δ
δ

ηη
δ
δ

η

==Δ

−=

=×=

≤≤=−=Δ

)layer j at theinput (

)10 rate, learning(

12 June, 2017 22 LG:nlp:DL:pushpak

Backpropagation – for
outermost layer

ijjjjji

jjjj

m

p
pp

th
j

j

j

jj

ooootw
oootj

otE

net
net
o

o
E

net
Ej

)1()(

))1()((Hence,

)(
2
1

)layer j at theinput (

1

2

−−=Δ

−−−−=

−=

=×−=−=

∑
=

η

δ

δ

δ

δ
δ

δ
δ

δ

12 June, 2017 23 LG:nlp:DL:pushpak

Backpropagation for hidden
layers

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons) j

i

….

….

….

….

k

δk is propagated backwards to find value of δj

12 June, 2017 24 LG:nlp:DL:pushpak

Backpropagation – for hidden
layers

)1()(

)1()(Hence,

)1()(

)1(

layernext

layernext

layernext

jj
k

kkj

jj
k

kjkj

jj
k j

k

k

jj
j

j

j

jj

iji

oow

oow

oo
o
net

net
E

oo
o
E

net
o

o
E

net
Ej

jow

−=

−××−−=

−××−=

−×−=

×−=−=

=Δ

∑

∑

∑

∈

∈

∈

δ

δδ

δ
δ

δ
δ

δ
δ

δ

δ

δ
δ

δ
δ

δ

ηδ

12 June, 2017 25 LG:nlp:DL:pushpak

Cause of Vanishing
Gradient problem!

General Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

12 June, 2017 26 LG:nlp:DL:pushpak

How does it work?
n  Input propagation forward and error

propagation backward (e.g. XOR)

w2=1 w1=1
θ  = 0.5

x1x2 x1x2

-1

x1 x2

-1 1.5
1.5

1 1

12 June, 2017 27 LG:nlp:DL:pushpak

Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/

 By Denny Britz
2. Introduction to RNN by Jeffrey Hinton
http://www.cs.toronto.edu/~hinton/csc2535/
lectures.html

12 June, 2017 LG:nlp:DL:pushpak 28

Sequence processing m/c

12 June, 2017 LG:nlp:DL:pushpak 29

E.g. POS Tagging

12 June, 2017 LG:nlp:DL:pushpak 30

Purchased Videocon machine

VBD NNP NN

I

h0 h1

o1 o2 o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis

12 June, 2017 31 LG:nlp:DL:pushpak

I

h0 h1

o1 o2 o3 o4

c2

a21 a22
a23

a24

like

h2

12 June, 2017 32 LG:nlp:DL:pushpak

I

h0 h1

o1 o2 o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

12 June, 2017 33 LG:nlp:DL:pushpak

I

h0 h1

o1 o2 o3 o4

c4

a41

a42
a43

a44

like the

h3 h2

camera

h4

12 June, 2017 34 LG:nlp:DL:pushpak

I

h0 h1

o1 o2 o3 o4

c5

a51

a52
a53

a54

like the

h3 h2

camera <EOS
>

h4 h5

Positive
sentiment

12 June, 2017 35 LG:nlp:DL:pushpak

Back to RNN model

12 June, 2017 LG:nlp:DL:pushpak 36

Notation: input and state
n  xt is the input at time step t. For example,

could be a one-hot vector corresponding
to the second word of a sentence.

n  st is the hidden state at time step t. It is the
“memory” of the network.

n  st= f(U.xt+Wst-1) U and W matrices are
learnt

n  f is a function of the input and the previous
state

n  Usually tanh or ReLU (approximated by
softplus)

12 June, 2017 LG:nlp:DL:pushpak 37

Tanh, ReLU (rectifier linear
unit) and Softplus

12 June, 2017 LG:nlp:DL:pushpak 38

=tanh
ee
ee

xx

xx

−

−

+

−
=tanh

),0max()(xxf =

)1ln()(exxg +=

Notation: output
n  ot is the output at step t

n  For example, if we wanted to predict
the next word in a sentence it would be
a vector of probabilities across our
vocabulary

n  ot=softmax(V.st)

12 June, 2017 LG:nlp:DL:pushpak 39

Operation of RNN

n  RNN shares the same parameters (U, V,
W) across all steps

n  Only the input changes

n  Sometimes the output at each time step
is not needed: e.g., in sentiment
analysis

n  Main point: the hidden states !!

12 June, 2017 LG:nlp:DL:pushpak 40

The equivalence between feedforward nets and recurrent
nets

w1 w4

w2 w3

w1 w2 W3 W4

time=
0

time=
2

time=
1

time=
3

Assume that there is a time
delay of 1 in using each
connection.

The recurrent net is just a
layered net that keeps
reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

12 June, 2017 41 LG:nlp:DL:pushpak

Reminder: Backpropagation with weight
constraints
•  Linear constraints

between the weights.

•  Compute the gradients
as usual

•  Then modify the
gradients so that they
satisfy the constraints.

•  So if the weights started
off satisfying the
constraints, they will
continue to satisfy
them.

21
21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂

∂
+

∂

∂

∂

∂

∂

∂

Δ=Δ

=

Example

12 June, 2017 42 LG:nlp:DL:pushpak

Backpropagation through time
(BPTT algorithm)

n  The forward pass at each time step.
n 
n  The backward pass computes the error

derivatives at each time step.

n  After the backward pass we add
together the derivatives at all the
different times for each weight.

12 June, 2017 43 LG:nlp:DL:pushpak

Binary addition using recurrent
network (Jeffrey Hinton’s lecture)

•  Feed forward n/w

•  But problem of variable
length input

00100110 10100110

11001100

hidden units

12 June, 2017 44 LG:nlp:DL:pushpak

The algorithm for binary addition

no carry
print 1

carry
print 1

no carry
print 0

carry
print 0

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
1

1
1

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two
input numbers.

1
1

12 June, 2017 45 LG:nlp:DL:pushpak

A recurrent net for binary
addition
•  Two input units and one output

unit.
•  Given two input digits at each

time step.
•  The desired output at each time

step is the output for the column
that was provided as input two
time steps ago.

–  It takes one time step to
update the hidden units
based on the two input
digits.

–  It takes another time step for
the hidden units to cause the
output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1

time

12 June, 2017 46 LG:nlp:DL:pushpak

The connectivity of the
network

•  The input units have
feed forward
connections

•  Allow them to vote
for the next hidden
activity pattern.

3 fully interconnected hidden
units

12 June, 2017 47 LG:nlp:DL:pushpak

What the network learns
n  Learns four distinct patterns of activity for the

3 hidden units.

n  Patterns correspond to the nodes in the finite
state automaton

n  Nodes in FSM are like activity vectors

n  The automaton is restricted to be in exactly
one state at each time

n  The hidden units are restricted to have exactly
one vector of activity at each time.

12 June, 2017 48 LG:nlp:DL:pushpak

The backward pass is linear
n  The backward pass, is

completely linear. If you
double the error derivatives at
the final layer, all the error
derivatives will double.

n  The forward pass determines
the slope of the linear function
used for backpropagating
through each neuron.

12 June, 2017 49 LG:nlp:DL:pushpak

Recall: Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

12 June, 2017 50 LG:nlp:DL:pushpak

The problem of exploding or
vanishing gradients (1/2)

–  If the weights are small, the gradients shrink
exponentially

–  If the weights are big the gradients grow
exponentially.

•  Typical feed-forward neural nets can cope with
these exponential effects because they only
have a few hidden layers.

12 June, 2017 51 LG:nlp:DL:pushpak

The problem of exploding or
vanishing gradients (2/2)
•  In an RNN trained on long sequences (e.g.

sentence with 20 words) the gradients can
easily explode or vanish.

–  We can avoid this by initializing the weights very
carefully.

•  Even with good initial weights, its very hard
to detect that the current target output
depends on an input from many time-steps
ago.

–  So RNNs have difficulty dealing with long-range
dependencies.

12 June, 2017 52 LG:nlp:DL:pushpak

Vanishing/Exploding gradient:
solution

n  LSTM
n  Error becomes “trapped” in the memory

portion of the block
n  This is referred to as an "error carousel“
n  Continuously feeds error back to each

of the gates until they become trained
to cut off the value

n  (to be expanded)
12 June, 2017 LG:nlp:DL:pushpak 53

Boltzmann Machine

12 June, 2017 LG:nlp:DL:pushpak 54

Illustration of the basic idea of
Boltzmann Machine

n  Illustrative task: To learn the
identity function

n  The setting is probabilistic, x
= 1 or
 x = -1, with uniform
probability, i.e.,
n  P(x=1) = 0.5, P(x=-1) =

0.5
n  For, x=1, y=1 with P=0.9
n  For, x=-1, y=-1 with P=0.9

w12 1
2

x
y

x y
1
-1

1
-1

12 June, 2017 55 LG:nlp:DL:pushpak

Illustration of the basic idea of
Boltzmann Machine (contd.)

n  Let α = output neuron states
 β = input neuron states
 Pα|β = observed probability
distribution
 Qα|β = desired probability distribution
 Qβ = probability distribution on input

 states β

12 June, 2017 56 LG:nlp:DL:pushpak

Illustration of the basic idea of
Boltzmann Machine (contd.)

n  The divergence D is given as:
D = ∑α∑β Qα|β Qβ ln Qα|β / Pα|β
called KL divergence formula
D = ∑α∑β Qα|β Qβ ln Qα|β / Pα|β

 >= ∑α∑β Qα|β Qβ (1 - Pα|β /Qα|β)
 >= ∑α∑β Qα|β Qβ - ∑α∑β Pα|β Qβ
 >= ∑α∑β Qαβ - ∑α∑β Pαβ
 {Qαβ and Pαβ are joint distributions}
 >= 1 – 1 = 0

12 June, 2017 57 LG:nlp:DL:pushpak

Precursor to
Softmax
Layer

Gradient descent for finding the
weight change rule

P(Sα) ∞ exp(-E(Sα)/T)

P(Sα) = (exp(-E(Sα)/T)) / (∑β є all statesexp(-E(Sβ)/T)

ln(P(Sα))= (-E(Sα)/T)-ln Z

D= ∑α∑βQα|β Qβ ln (Qα|β / Pα|β)

Δwij= η (δD/δwij); gradient descent

12 June, 2017 58 LG:nlp:DL:pushpak

Calculating gradient: 1/2

δD / δwij = δ/δwij [∑α∑β Qα|β Qβ ln (Qα|β / Pα|β)]
 = δ/δwij [∑α∑β Qα|β Qβ ln Qα|β
 - ∑α∑β Qα|β Qβ ln Pα|β]

δ(ln Pα|β) /δwij = δ/δwij [-E(Sα)/T– lnZ]

Z = ∑βexp(-E(Sβ))/T

Constant
With respect
To wij

12 June, 2017 59 LG:nlp:DL:pushpak

Calculating gradient: 2/2
δ [-E(Sα)/T] /δwij = (-1/T) δ/δwij [- ∑i ∑j>i wij si

sj]
 = (-1/T)[-sisj|α]
 = (1/T)[sisj|α]

δ (ln Z)/δwij=(1/Z)(δZ/δwij)

Z= ∑βexp(-E(Sβ)/T)

δZ/δwij= ∑β[exp(-E(Sβ)/T)(δ(-E(Sβ/T)/δwij)]

 = (1/T) ∑βexp(-E(Sβ)/T).sisj|β 12 June, 2017 60 LG:nlp:DL:pushpak

Final formula for Δwij

Δwij= [1/T/ [sisj|α – (1/Z) ∑βexp(-E(Sβ)/

T).sisj|β
 = [1/T][sisj|α – ∑βP(Sβ).sisj|β]
 Expectation of ith and jth

Neurons being on together

12 June, 2017 61 LG:nlp:DL:pushpak

Issue of Hidden Neurons

n  Boltzmann machines
n  can come with hidden neurons
n  are equivalent to a Markov Random field
n  with hidden neurons are like a Hidden

Markov Machines

n  Training a Boltzmann machine is
equivalent to running the Expectation
Maximization Algorithm

12 June, 2017 62 LG:nlp:DL:pushpak

Use of Boltzmann machine

n  Computer Vision
n  Understanding scene involves what is

called “Relaxation Search” which gradually
minimizes a cost function with progressive
relaxation on constraints

n  Boltzmann machine has been found to
be slow in the training
n  Boltzmann training is NP-hard.

12 June, 2017 63 LG:nlp:DL:pushpak

Questions

n  Does the Boltzmann machine reach the global
minimum? What ensures it?

n  Why is simulated annealing applied to
Boltzmann machine?
n  local minimum à increase T à n/w runs
àgradually reduce T à reach global minimum.

n  Understand the effect of varying T
n  Higher T à small difference in energy states

ignored, convergence to local minimum fast.

12 June, 2017 64 LG:nlp:DL:pushpak

Self Organization and
Kohonen Net

12 June, 2017 LG:nlp:DL:pushpak 65

Mapping of Brain

Side areas
For auditory information processing

Back of brain(vision)

Lot of resilience:

Visual and auditory
areas can do each
other’s job

12 June, 2017 66 LG:nlp:DL:pushpak

Character Recognition:
A, A, A, ,

,
O/p grid

. . . . I/p neuron

12 June, 2017 67 LG:nlp:DL:pushpak

Kohonen Net
•  Self Organization or Kohonen network fires a
group of neurons instead of a single one.
•  The group “some how” produces a “picture” of
the cluster.
•  Fundamentally SOM is competitive learning.
•  But weight changes are incorporated on a
neighborhood.
•  Find the winner neuron, apply weight change for
the winner and its “neighbors”.

12 June, 2017 68 LG:nlp:DL:pushpak

Neurons on the contour are the
“neighborhood” neurons.

Winner

12 June, 2017 69 LG:nlp:DL:pushpak

Weight change rule for SOM

W(n+1) = W(n) + η(n) (I(n) – W(n))
 P+δ(n) P+δ(n) P+δ(n)

Neighborhood: function of n

Learning rate: function of n
δ(n) is a decreasing function of n
η(n) learning rate is also a decreasing function of
n
0 < η(n) < η(n –1) <=1

12 June, 2017 70 LG:nlp:DL:pushpak

Pictorially

Winner
δ(n)

. . . .

Convergence for kohonen not
proved except for uni-
dimension

12 June, 2017 71 LG:nlp:DL:pushpak

…

… … .

P neurons o/p layer

n neurons

Clusters:

A A :

A

Wp

B :
C :

:
 :

12 June, 2017 72 LG:nlp:DL:pushpak

Clustering Algos

1. Competitive learning
2. K – means clustering
3. Counter Propagation

12 June, 2017 73 LG:nlp:DL:pushpak

K – means clustering
K o/p neurons are required from the knowledge
of K clusters being present.

26 neurons

 Full connection

n neurons

……

……

12 June, 2017 74 LG:nlp:DL:pushpak

Steps

1. Initialize the weights randomly.
2. Ik is the vector presented at kth iteration.

3. Find W* such that

 |w* - Ik| < |wj - Ik| for all j
4. make W*(new) = W* (old) + η(Ik - w*).

5 k ß k +1.

6. Go to 2 until the error is below a threshold.

12 June, 2017 75 LG:nlp:DL:pushpak

Two part assignment

Supervised

Hidden layer

12 June, 2017 76 LG:nlp:DL:pushpak

A1 A2 A3

4 I/p neurons
A4

Cluster Discovery By
SOM/Kohenen Net

12 June, 2017 77 LG:nlp:DL:pushpak

NeoCognitron
(Fukusima et. al., 1980)

12 June, 2017 78 LG:nlp:DL:pushpak

Hierarchical feature extraction
based

12 June, 2017 79 LG:nlp:DL:pushpak

12 June, 2017 80 LG:nlp:DL:pushpak

S-Layer

n  Each S-layer in the neocognitron is
intended for extraction of features
from corresponding stage of hierarchy.

n  Particular S-layers are formed by
distinct number of S-planes. Number of
these S-planes depends on the number
of extracted features.

12 June, 2017 81 LG:nlp:DL:pushpak

V-Layer

n  Each V-layer in the neocognitron is
intended for obtaining of
informations about average
activity in previous C-layer (or input
layer).

n  Particular V-layers are always formed by
only one V-plane.

12 June, 2017 82 LG:nlp:DL:pushpak

C-Layer

n  Each C-layer in the neocognitron is
intended for ensuring of tolerance of
shifts of features extracted in
previous S-layer.

n  Particular C-layers are formed by
distinct number of C-planes. Their
number depends on the number of
features extracted in the previous S-
layer.

12 June, 2017 83 LG:nlp:DL:pushpak

Hands on for afternoon

n  Implement the binary adder on RNN

n  Create a FF-BP POS tagger

12 June, 2017 LG:nlp:DL:pushpak 84

