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Abstract

The mining of adverse drug reaction (ADR)
has a crucial role in the pharmacovigilance.
The traditional ways of identifying ADR are
reliable but time-consuming, non-scalable and
offer a very limited amount of ADR relevant
information. With the unprecedented growth
of information sources in the forms of so-
cial media texts (Twitter, Blogs, Reviews etc.),
biomedical literature, and Electronic Medical
Records (EMR), it has become crucial to ex-
tract the most pertinent ADR related informa-
tion from these free-form texts. In this paper,
we propose a neural network inspired multi-
task learning framework that can simultane-
ously extract ADRs from various sources. We
adopt a novel adversarial learning-based ap-
proach to learn features across multiple ADR
information sources. Unlike the other exist-
ing techniques, our approach is capable to ex-
tracting fine-grained information (such as ‘In-
dications’, ‘Symptoms’, ‘Finding’, ‘Disease’,
‘Drug’) which provide important cues in phar-
macovigilance. We evaluate our proposed
approach on three publicly available real-
world benchmark pharmacovigilance datasets,
a Twitter dataset from PSB 2016 Social Me-
dia Shared Task, CADEC corpus and Medline
ADR corpus. Experiments show that our uni-
fied framework achieves state-of-the-art per-
formance on individual tasks associated with
the different benchmark datasets. This estab-
lishes the fact that our proposed approach is
generic, which enables it to achieve high per-
formance on the diverse datasets. The source
code is available here1.

1 Introduction

Early detection and monitoring of adverse drug
reactions (ADRs) can minimize the deleteri-
ous impact on patients and health-care systems
(Hakkarainen et al., 2012; Sultana et al., 2013).

1https://bit.ly/2EMln36

For prevention, the drug safety organizations
known as pharmacovigilance agencies conduct
post-market surveillance to identify the drug’s side
effects post-release. However, the majority of
the existing ADE surveillance systems utilizes
passive spontaneous reporting system databases,
such as the Federal Drug Administration’s Ad-
verse Event Reporting System (FAERS) (Li et al.,
2014). These systems are often under-reported, bi-
ased and delayed. To overcome the limitation of a
passive reporting system, active methods to ADR
monitoring continuously explores frequently up-
dated ADR data sources (Behrman et al., 2011).

The quantity and near-instantaneous nature of
social media provide potential opportunities for
real-time monitoring of Adverse Drug Reaction
(ADR). The fact that this data is up-to-date and is
generated by patients overcomes the weaknesses
of traditional ADR surveillance techniques (Lea-
man et al., 2010). Thus, social media could com-
plement traditional information sources for more
effective pharmacovigilance studies, as well as po-
tentially serve as an early warning system for un-
known ADR, which may be important for a clin-
ical decision. Additionally, the high statistically
significant correlation (p < 0.001, ρ = 0.75) be-
tween FAERS and ADRs (extracted through Twit-
ter data) shows that Twitter is a viable pharma-
covigilance data source (Freifeld et al., 2014).

With the enormous amount of data generated
every day, it is desirable to have an automated
ADR extraction system that can ease the work
of domain experts to quickly investigate the vast
amount of unstructured text and identify emerg-
ing trends. This may correspond to mapping pre-
viously undiscovered adverse effect with a given
drug, or discovering an unforeseen impact to a
change in the manufacturing process. However,
extracting this information from the unstructured
text poses several challenges as follows:

https://bit.ly/2EMln36


Figure 1: Sample sentences from CADEC (Text1),
MEDLINE (Text 2) and Twitter (Text 3,4) dataset. The
token in red represents ADR, purple denotes Finding,
blue represent Drug name and brown colour text repre-
sents Indication.

• Multiple Context: Context carries an essen-
tial role in determining the semantic labels of
the medical concepts. For example, consider
the following tweets:
Tweet 1: “Advil cured my horrific pain, but
made my stomach upset”
Tweet 2: “Advil cured my upset stomach but
gave me a horrific pain”
The above tweets, although have a similar
medical concept, their contexts specify the
associated class types. In Tweet 1, ‘pain’
refers to the class type Symptom, while in
Tweet 2, it refers to ADR.

• Multiple word form: Social media text of-
fers some inherently distinct challenges such
as containing short word-forms ( eg,“need to
sleep 24/7”), misspelled wordforms (eg, “flu-
oxetine, it just make me so tiered ’), abbre-
viated words (eg, CIT for Citopram), slangs
(eg, “seroquel knocked me out”), implicit
sense (eg, “hard time getting some Z’s”),
symbols (such as emoticons), and figurative
languages (eg, “quetiapine zombie”). This
arbitrariness increases the difficulty level in
capturing the semantic relationships between
the different types.

To overcome these limitations, several machine
learning and deep learning models are introduced
for ADR mining. However, these models are very
task-specific and often fail to show reasonable ac-
curacies when these evaluated for some other do-
mains or other annotation schemes.

In this paper, we propose a unified multi-task
learning (MTL) framework that works on the con-
cept of adversarial learning. Our model is capa-
ble of learning several tasks associated with ADR
monitoring with different levels of supervisions
collectively. The proposed approach differs from

the previous studies in two aspects:
Firstly, most of the existing methods in multi-task
learning attempt to divide the features of differ-
ent tasks based on task-specific and task-invariant
feature space, considering only component-wise
parameters. The major drawback of this mecha-
nism is that the common feature space often in-
corporates the task-specific feature space, leading
to feature redundancy. Given this issue in multi-
task learning (MTL), in our proposed framework
we employ adversarial learning (Goodfellow et al.,
2014), which helps in eliminating redundant fea-
tures from the feature space and prevent the con-
tamination between shared and task-specific fea-
tures. Secondly, we also employ the highway
and residual connection whenever necessary to
avoid the vanishing gradient problem and improve
the performance of our deep neural model (multi-
headed attention based stacked recurrent and con-
volutional neural network).
Contributions:
Contributions of our current work can be summa-
rized as follows:
(1) We propose a unified multi-task learning
(MTL) framework for pharmacovigilance min-
ing that exploits the capabilities of adversarial
learning to learn the shared complementary fea-
tures across the multiple ADR datasets. To our
best knowledge, this is the very first attempt to
study the effect of adversarial learning method in
MTL environment, especially for pharmacovigi-
lance mining.
(2) Our proposed model is capable of automati-
cally identifying the various information (such as
Symptom, Finding, Disease, Drug), in addition to
the ADR.
(3) We validate our proposed framework on
three popular benchmark datasets, namely Twitter
(Sarker et al., 2016), CADEC (Karimi et al., 2015)
and MEDLINE (Gurulingappa et al., 2012a) for
pharmacovigilance mining, having different anno-
tation schemes. We extract the following tags:
ADR, Drugs, and Indications from the Twitter
dataset, ADR, Disease, Drug, Finding; and Symp-
tom from the CADEC dataset; and Drug and ADR
mentions from the MEDLINE dataset. Figure-1
shows exemplary sentences from each dataset.
(4) Our unified multi-task model achieves the
state-of-the-art performance in the ADR labeling
and outperforms the strong baseline models for all
the other pharmacovigilance labels.



Figure 2: Proposed model architecture for pharmacovigilance mining. (all the neurons representation are hypo-
thetical). The right part of the image describes the Component 1 and Component 2.

2 Related Work

Depending upon the source of data, we categorize
the previous works as:
(i) Biomedical Text and Electronic Medical
Record:
Several Natural Language Processing (NLP) tech-
niques have been proposed to extract ADRs from
the Electronic Medical Record (Wang et al., 2009;
Friedman, 2009; Aramaki et al., 2010) and medi-
cal case reports (Gurulingappa et al., 2011). Gu-
rulingappa et al. (2012a) adapted machine learn-
ing technique for the identification and extraction
of potential adverse drug event relations from the
MEDLINE case reports. Unlike other spontaneous
data sources such as social media, both EMR and
medical case reports offer several advantages of
having complete records of patients’ medical his-
tory, treatment, conditions and the possible risk
factors, and is also not restricted to the patients
experiencing ADRs (Harpaz et al., 2012b). Re-
cently, a study conducted by (Sarker and Gonza-
lez, 2015) utilized the data from MEDLINE case
reports and Twitter. They proposed several textual
features and investigated how the combination of
different datasets would increase the performance
of identifying ADRs. With the advancement of
the neural network technique, (Huynh et al., 2016)
investigated multiple neural network (NN) frame-
works for ADR classification on both medical case
reports and Twitter dataset.
(ii) Social Media: Social media offers a very
rich and viable source of information for iden-
tifying potential ADRs in a real-time. Leaman

et al. (2010) conducted very first study utilizing
user comments from their social media post. In
total, the dataset contains 6, 890 user comments.
The research shows that user comments are highly
beneficial in uncovering the ADRs. Further works
(Gurulingappa et al., 2012b; Benton et al., 2011;
Harpaz et al., 2012a) utilized the lexicon-based ap-
proach to extract the ADRs. However, these ap-
proaches are only restricted to a number of target
ADRs. Nikfarjam and Gonzalez (2011) exploited
rule-based technique over naive lexicon-based ap-
proach on the same dataset which was capable of
detecting ADR not included in lexicons.

With the emergence of annotated data, sev-
eral research works have employed supervised
machine learning techniques such as Support
Vector Machine (SVM) (Sarker and Gonzalez,
2015), Conditional Random Field (CRF) (Nikfar-
jam et al., 2015) and Random Forest (Zhang et al.,
2016).

In recent years with the introduction of deep
learning techniques, most of the studies utilize
deep learning model to predict ADRs. Lee et al.
(2017) developed semi-supervised deep learning
model on the Twitter corpus. In particular, they
used the Convolution Neural Network (CNN)
for classification. Stanovsky et al. (2017) used
the Recurrent Neural Network integrated with
knowledge graph embedding on the CADEC cor-
pus. Their study shows that this integration can
make the model more accurate. Tutubalina and
Nikolenko (2017) explored the combination of
CRF and Recurrent Neural Network (RNN). Their



results show that CRF can assist RNN model
in capturing the context well. The most rele-
vant work to this study is the work conducted by
Chowdhury et al. (2018). They learned jointly
for three tasks: binary classification, ADR label-
ing, and indication labeling using RNN-attention-
coverage model.

3 Methodology

With our adversarial multi-task framework, we
jointly learn to label the ADR events from mul-
tiple ADR datasets. ADR labeling is a sequence
labeling problem. For a given input sequence X ,
the model learns to find the optimal tag sequence
y∗. Mathematically,

y∗ = argmax
y

P (Y |X) (1)

Our proposed adversarial multi-task framework is
depicted in Figure 2. Our model comprises of five
components:
(1) Embedding Layer: It captures the meaning
and semantic associations between pharmacovigi-
lance word that appears in the text.
(2) Encoder/Feature Extractor Layer, which
generates both task-specific and task-shared fea-
ture. Each of these feature generator modules con-
sists of Convolutional Neural Network (CNN) fol-
lowed by stacked Bi-Gated Recurrent Unit (GRU).
Task-specific feature generator is responsible for
capturing the features specific to the task. In the
task-shared feature generator, there is an addi-
tional adversarial learning component, where fea-
ture extractor (Generator) is working operates ad-
versarially towards a learnable multi-layer percep-
tron (Discriminator), preventing it from making an
accurate prediction about the types of the task the
feature generated from.
(3) Concatenation Layer: This is responsible for
concatenating the feature representation obtained
by both the feature extractor modules.
(4) Multi-head Attention Layer: This learns to
encode better the given word by looking at the
other words in the text.
(5) CRF Layer: This is used to predict the most
probable tag sequence.

3.1 Input Text
The input to our model is a sequence of words
X = (x1, x2, . . . , xn) corresponding to social-
media posts/medical case reports comprising of n
words.

3.2 Embedding Layer
This layer generates two forms of representations:
Word embedding: maps each word xi to low di-
mensional vector wi ∈ Rde . We use pre-trained
word embedding of dimension de.
Character embedding:: to capture the morpho-
logical features. The character embedding can
help in capturing the representations of the out
of vocabulary (OOV) words, misspelt words and
variations in noun or verb phrase. When it comes
to the social media text, this issue even becomes
more crucial to resolve. Character embedding is
one of the ways to resolve this issue. It allows the
model to learn lexical patterns (e.g. suffix or pre-
fix) which eventually helps in capturing the out-
of-vocabulary (OOV) words and some other infor-
mation which is difficult to capture through word
embedding.

We employ CNN for character embedding.
Let C = {c1, c2, . . . , ck} be the character se-

quence of words xi having length l. Each charac-
ter cj is represented as a one-hot vector of length
C, which is the number of unique characters in the
dataset. The resulted one-hot representations of all
the characters in the word are stacked to form a
matrix M ∈ Rk×|C|. Thereafter, we apply several
filters of different width to this matrix. The width
of these filters varies from 1 to k, i.e., these fil-
ters look at 1 to k-gram character sequences. The
max-pooling operation is performed followed by
the convolutional operation to pick the most rel-
evant feature. We call this character embedding
feature as ci.

Finally, the output of word embedding for the
ith word is the concatenation of word embedding
wi and the character embedding ci. For each xi ∈
X , the embedding layer generate the embedding
in the following way:

ei = wi ⊕ ci (2)

3.3 Feature Extractor
Our feature extractor utilizes CNN and stacked Bi-
GRU to encode the output of the Embedding layer.
CNN and stacked Bi-GRU takes the Embedding
layer output as input and generate the features to
further encode the sequence information. Since,
we employ the stacked Bi-GRU, there could be
vanishing gradient problem. To tackle this, we em-
ploy highway layer (Srivastava et al., 2015), that
has shown a significant impact in reducing vanish-
ing gradient problem in various NLP tasks (Kim



et al., 2016; Costa-jussà and Fonollosa, 2016).
Let us the consider the input sequence to this

layer is E = {e1, e2, . . . , en}. A convolution
operation is performed over the zero-padded se-
quence Ep. Similar to the character embedding,
a set of k filter of size m are applied to the se-
quence. We obtain convoluted features ct at given
time t for t = 1, 2, . . . , n.

ct = relu(F [e
t−m−1

2
. . . et . . . et+m−1

2
]) (3)

Then, we generate the feature vectors C ′ =
[c′1, c

′
2 . . . c

′
n], by applying max pooling on C.

Inspired by the success of stacked attentive
RNN in solving other NLP tasks (Wu et al., 2016;
Graves et al., 2013; Dyer et al., 2015; Prakash
et al., 2016), we use the stacked GRU to encode
the input text. The stacked GRU is an extension
to GRU model that has multiple hidden GRU lay-
ers. The purpose of using multiple GRUs layers
is to learn more sophisticated conditional distribu-
tions from the data (Bahdanau et al., 2015). In
this work, we employ vertical stacking strategy
where the output of the previous layer of GRU is
fed to the highway layer and corresponding out-
put is passed as input to the next layer of GRU.
Let the number of layers in stacked GRU is L then
the GRU computes the hidden state for each layer
l ∈ L as follows:

hl
k = GRU(hl−1

k , hl
k−1) (4)

where, hlk is the hidden state representation at lth

layer. The input h0k to the first layer (l = 1) of
GRU are initialized randomly. The first layer of
GRU unit at kth word feature takes the input as
the embedding layer output ek of the kth word.
We compute the forward (

−→
hk) and backward (

←−
hk)

hidden state for each word k in the sentence. The
final hidden state at layer l ∈ L is computed by

augmenting both the hidden states: zlk = [
−→
hlk⊕
←−
hlk].

The final input text representation from stacked
Bi-GRU layer is calculated by taking the hidden
state of the last layer (L) of the GRU as follows:

h1, h2, . . . , hn = [
−→
hL
1 ⊕
←−
hL
1 ], [
−→
hL
2 ⊕
←−
hL
2 ], . . . , [

−→
hL
n⊕
←−
hL
n ] (5)

We compute the overall input text representation
by concatenating the output of CNN layer C

′
and

stacked Bi-GRU (eq. 5) as follows:

z1, z2, . . . , zn = [c
′
1 ⊕ h1], [c

′
2 ⊕ h2], . . . , [c

′
n ⊕ hn] (6)

The above approach to generate task specific fea-
ture is computed at for each task separately. In or-
der to capture the common features along the task,

we utilize the above feature extractor framework
which serves as a Generator model and the feed
forward neural network as a Discriminator.

3.4 Task Discriminator Layer
Our feature extractor layer is generating two types
of features, shared and task-specific. Ideally both
feature spaces should be mutually exclusive. To
ensure that task-specific features of given task do
not exist in the shared space, we exploit the con-
cept of adversarial training (Goodfellow et al.,
2014) into shared feature space. We follow the
same method as introduced by (Liu et al., 2017) to
make the shared feature space uncontaminated by
the task-specific features.

For achieving the aforementioned strategy, a
Task Discriminator D is used to map the
attention prioritized shared feature to estimate
the task of its origin. In our case, Task
Discriminator is a fully connected layer us-
ing a softmax layer to produce the probability dis-
tribution of the shared features belonging to any
task. The shared feature extractor (c.f. 3.3) works
as Generator (G) to generate shared features.
The shared feature extractor is made to work in an
adversarial way, preventing the discriminator from
predicting the task and hence preventing contam-
ination in the shared space. The adversarial loss
is used to train the model. Let us assume that the
shared feature (c.f. equation 6) is {zs1, zs2, . . . , zsn}.
It can be represented as:

D(zs) = softmax(zsnW
d + bd) (7)

where W d and bd are the weight matrix and bias,
respectively.

3.5 Concatenation Layer
Let us denote the shared and task-specific features
for input text are zs = {zs1, zs2, . . . , zsn} and zt =
{zt1, zt2, . . . , ztn}. Finally, the output of the feature
extractor layer is computed as the concatenation of
the shared and task-specific feature as follows:

S = zs1 ⊕ zt1, z
s
2 ⊕ zt2, . . . , z

s
n ⊕ ztn

= s1, s2, . . . , sn−1, sn
(8)

3.6 Multi-head Attention Layer
The multi-head attention is used to learn the de-
pendencies between any pair of words in the input
text. We apply the multi-head attention on the fi-
nal representation of the input text S as computed
in Equation 8. The multi-head attention (Vaswani



et al., 2017) can be precisely described as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (9)

where, Q, K and V are the query, key and value
matrix. In our experiment, all these values are
equivalent to the S (with the multiplication of the
respective learning weights) and d is the dimen-
sion of the feature extraction units. Multi-head at-
tention first linearly projects the queries, keys and
values to the given no. of the head (t) using differ-
ent linear projections. Then these projections per-
form the scaled dot-product attention in parallel.
Finally, these results of attention are concatenated
and once again projected to get the new represen-
tation. Formally, the multi-head attention at head
i can be computed by:

headi = Attention(SWQ
i , SW

K
i , SW

V
i )

S
′
=W (head1 ⊕ head2⊕, . . . ,⊕headt)

(10)

whereWQ
i ,WK

i andW V
i are the weight matrices.

3.7 Conditional Random Field Layer

In sequence labeling problem there is often a
dependency between the successive labels. In-
stead of predicting the current label independently
through softmax layer, we employ the CRF (Laf-
ferty et al., 2001) layer, which takes care of the
previous label to predict the current label. Firstly,
the attentive feature at given time step t is pro-
jected to another space which has a dimension
equal to the number of output tags. Mathemati-
cally, it can be formulated as follows:

ot = WSS,
t + bS (11)

Thereafter, we calculate the score to predict a
given label sequence y as follows:

score(y|X) =
n∑

t=1

(At−1,t + ot,yt) (12)

where A is the transition score matrix. Finally,
we select the tag sequence with highest score as
follows:

ŷ = argmax
y∈Y

score(y|x) (13)

In decoding stage, we use Viterbi algorithm to
compute the optimal tag sequence.

4 Experimental Details

4.1 Network Training
We have optimized two different losses to train our
multi-task model. The first loss is task-specific
loss ofLtask, which is specific for each task. Apart
from task-specific loss, we also optimize the ad-
versarial loss to train the network not correctly to
predict the task.

For task-specific loss, we use negative log-
likelihood objective as the loss function for each
task. Given the total number of task T and N
training samples (xi, yi) from task t ∈ T , the task
loss Ltask can be computed by the following equa-
tion:

Ltask = −
T∑

t=1

N∑
i=1

logp(ŷit|xt
i) (14)

The likelihood function p(ŷit|xti) can be computed
by the following equation:

p(ŷi
t|xt

i) =
escore(ŷi

t|xt
i)∑

y∈Y escore(yi
t|xt

i)
(15)

The score(.) function is computed by the equation
12. The adversarial loss trains the shared feature
extractor to generate the shared features such that
the task discriminator layer cannot reliably recog-
nize which task the input text comes from. The
adversarial loss Ladv can be computed as follows:

Ladv = min
G

(
max
D

( T∑
t=1

N∑
i=1

dtilog
[
D
(
G(xt

i))]
))

(16)

where dti is the gold label indicating the type of
the current task and xti is the ith example of task t.
The min-max optimization problem is addressed
by the gradient reversal layer (Ganin and Lempit-
sky, 2015). The final loss of the model is defined
by the following equation:

L = α× Ltask + β × Ladv (17)

where α and β are the scalar parameter.

4.2 Hyper-parameters
We use the pre-trained word embedding 2 from
Pyysalo et al. (2013) of dimension 200. It is
trained on the combination of PubMed and PMC
biomedical texts with texts extracted from a recent
English Wikipedia dump. We set the maximum
length of input text as 44 and maximum character

2http://evexdb.org/pmresources/vec-space-models/



length of 10. The CNN based character embed-
ding length of 100 is used in this experiment. The
optimal hidden state dimension of GRU is set to
be 100. We use 4 GRU layers to form the stacked
GRU layer. The CNN layer uses the filter set:
{2, 3, 4}. In multi-head attention layer, we use a
total of 4 heads to compute the attentive represen-
tation. We set the dropout rate to 0.5. The batch
size is set to 16 and value of loss weights α and β
are set to be 0.8 and 0.2, respectively. The Adam
Optimization (Kingma and Ba, 2015) method with
a learning rate of 0.01 is used during training to
optimize the network weights. The optimal val-
ues of hyper-parameters are achieved through the
10-fold cross validation experiment.

4.3 Datasets
We use three different ADR labeling datasets :
PSB 2016 Social Media Shared Task for ADR
Extraction dataset (Twitter), CADEC, and MED-
LINE to evaluate our multi-task model perfor-
mance. It is to be noted that our model is trained
simultaneously on the different ADR datasets.
The different datasets used in the experiment are
as follows:

1. Twitter dataset: The first dataset, which we
use is the Twitter dataset from PSB 2016 So-
cial Media Shared Task for ADR Extraction
task. It contains 572 tweets which are fully
annotated for mentions of ADR, tweet ID,
start and end offset, UMLS ID, annotated text
span and the related drugs. We extracted the
following three tags from this dataset: ADR,
Drugs, and Indications.

2. CADEC adverse drugs events dataset: The
another dataset, which we use is the CADEC
adverse drugs event dataset. It contains a
total of 1248 sentences containing different
tags. Our model extract the following tags
from CADEC Corpus: ADR, Disease, Drug,
Finding and Symptom.

3. MEDLINE ADR dataset: This ADR corpus
was released by Gurulingappa et al. (2012b).
It was derived from the MEDLINE case re-
ports3. This case report provides information
about the symptoms, signs, diagnosis, treat-
ment and follow-up of individual patients.
This corpus contains 2972 documents with

3https://www.nlm.nih.gov/bsd/indexing/
training/PUB_050

20967 sentences. Out of which, 4272 sen-
tences are annotated with names and rela-
tionships between drugs, adverse effects and
dosages. Our model extract the Drug and
ADR mentions in the sentences.

5 Result and Analysis

We evaluate the pharmacovigilance labeling tasks
in terms of Precision, Recall and F1-Score. Un-
like the existing system, we evaluate the perfor-
mance of our model, using the exact matching
scheme, where a prediction sequence is counted
as correct only if all the sequence labels are pre-
dicted correctly. We will begin by first describing
the baselines models, followed by the results ob-
tained from the proposed model and then present
the analysis of the results.

5.1 Baselines

We compare our adversarial multi-task model with
the following state-of-the-art baselines. It is to be
noted that these baselines are re-implementation
of the state-of-the-art methods for ADR extrac-
tion.
(1) ST-BLSTM: This is a single task model for
ADR labeling with Bi-LSTM as sentence encoder.
In our experiment, we build the individual model
for each dataset.
(2) ST-CNN: This model is similar to baseline ST-
BLSTM, but instead of using Bi-LSTM for sen-
tence encoder, we use CNN with filters: {2, 3, 4}.
(3) CRNN: In this model CNN and LSTM are to-
gether used for sentence encoder (Huynh et al.,
2016). We adopt the same architecture for ADR
extraction by classifying each token of the sen-
tence into a pre-defined set of tags.
(4) RCNN: This model is similar to the third base-
line, but here we extract the LSTM feature first and
then pass these features as the input to the CNN
network.
(5) MT-BLSTM: It is a multi-task model (Chowd-
hury et al., 2018) with a shared Bi-LSTM layer
across the task for sentence encoder and task-
specific Bi-LSTM for each task. The final repre-
sentation is obtained by concatenating shared and
task-specific Bi-LSTM.
(6) MT-Atten-BLSTM: This baseline model
(Chowdhury et al., 2018) is similar to the MT-
BLSTM. The sentence encoder of this model is
also equipped with the word level attention mech-
anism.

https://www.nlm.nih.gov/bsd/indexing/training/PUB_050
https://www.nlm.nih.gov/bsd/indexing/training/PUB_050


Models
Twitter CADEC MEDLINE

P R F1 P R F1 P R F1
ST-BLSTM 57.7 56.8 57.3 52.9 49.4 51.1 71.65 72.19 71.91

ST-CNN 63.8 65.8 67.1 39.7 42.7 42.0 66.88 73.81 70.17
CRNN (Huynh et al., 2016) 61.1 62.4 64.9 49.5 46.9 48.2 71.0 77.3 75.5
RCNN (Huynh et al., 2016) 57.6 58.7 63.6 42.4 44.9 43.6 73.5 72.0 74.0

MT-BLSTM (Chowdhury et al., 2018) 65.57 61.02 63.19 60.50 55.16 57.62 72.72 75.49 74.0
MT-Atten-BLSTM (Chowdhury et al., 2018) 62.26 69.62 65.73 56.63 60.0 58.27 75.08 81.06 77.95

Proposed Model 68.78 70.81 69.69 64.33 67.03 65.58 81.97 82.61 82.18

Table 1: Result comparison of the proposed method with the state-of-art baseline methods. Here, ‘P’, ‘R’, ‘F1’
represents Precision, Recall and F1-Score. The results on CADEC and MEDLINE are on 10-fold cross validation;
for the twitter dataset, we use the train and test sets as provided by the PSB 2016 shared task.

Model
Components Twitter CADEC MEDLINE

Proposed Model 69.69 65.58 82.18
– Character Embedding 67.63 (2.06 ↓) 56.10 (9.48 ↓) 76.34 (5.84 ↓)
– Multi-head Attention 68.65 (1.04 ↓) 60.51 (5.07 ↓) 77.71 (4.47 ↓)
– Adversarial Learning 68.11 (1.58 ↓) 58.57 (7.01 ↓) 71.21 (10.97 ↓)

Table 2: Ablation study on all the dataset. The val-
ues in the bracket shows the absolute decrements (↓) in
the proposed model by removing the respective com-
ponent. It shows the contribution (in terms of model
performance in F1 Score) of that component in our pro-
posed model.

5.2 Results

The extensive results of our proposed model with
comparisons to the state-of-the-art baselines tech-
niques are reported in Table 1. Our proposed
model outperforms the state-of-the-art baselines
techniques by fair margins in terms of precision,
recall and F1-Score for all the datasets. In our
first experiment, we train two models (i.e. Single-
Task BLSTM and Multi-Task BLSTM) to analyze
the effect of the multi-task model (MT-BLSTM)
over a single task model (ST-BLSTM). On all the
three datasets, we can visualize from Table 1 that,
the multi-task framework with its sharing scheme
can help in boost the performance of the sys-
tem. We observe the performance improvement
of 5.89, 6.52 and 2.09 F1-Score points on Twit-
ter, CADEC, and MEDLINE dataset, respectively.
The similar improvement is also observed in terms
of precision and recall.

In comparison to the baseline 5 model, our
proposed method achieve the improvement of
6.5, 7.96, and 8.18 F1-Score points on Twit-
ter, CADEC, and MEDLINE dataset, respectively.
This shows the robustness of our proposed multi-
task method. We also compare our proposed sys-
tem with MT-Atten-BLSTM model. The results
show the performance improvement of 3.96, 7.31,

and 4.23 F1 Score points for Twitter, CADEC and
MEDLINE dataset, respectively. The improve-
ments over all the baselines methods are statisti-
cally significant as p < 0.05.

5.3 Ablation Study
To analyze the impact of various component of our
model, we perform the ablation study (c.f. Table-
2) by removing one component from the proposed
model and evaluate the performance on all the
three datasets. Character embedding is found to
be the most crucial component on Twitter, and
CADEC datasets as both of these datasets are from
the social media text and carry the nature of the
short text and out of vocabulary words.

To prove our hypothesis (introduction of adver-
sarial learning in the multi-task framework can
make shared space independent of the task in-
variant features), we exclude the adversarial loss
from our proposed framework. We could see a
significant decline in performance. This depicts
that making the task shared space free from the
contamination of task-specific feature, can signifi-
cantly improve the performance of the system. Re-
moval of the multi-head attention also lead to drop
of an average 4% F1-Score points across all the
datasets.

6 Analysis

To get a deeper insight into how our multi-task
model performs over the state-of-the-art multi-
task baseline model, we sample few sentences
from all the three datasets. In the Table-3, we
demonstrate the capability of our model in cor-
rectly predicting all the labels, while the MT-
LSTM and MT-LSTM-atten make the incorrect
prediction. In the sentence 1 due to the sharing
scheme, bipolar was correctly labeled as Indica-
tion.



Sentence 1 fluoxetine and quet combo zombified me ahh the med merrygoround bipolar
Actual Labels B-Drug O B-Drug O B-ADR O O O O O B-Indication
MT-LSTM B-Drug O B-Drug O O O O O O O O
MT-LSTM-Atten B-Drug O B-Drug O B-ADR O O O O O O
Proposed Approach B-Drug O B-Drug O B-ADR O O O O O B-Indication
Sentence 2 clozapine-induced tonic-clonic seizure managed with valproate implication for clinical care
Actual Labels B-Drug B-ADR I-ADR O O O O O O O
MT-LSTM B-Drug O O O O O O O O O
MT-LSTM-Atten B-Drug O B-ADR O O B-ADR O O O O
Proposed Approach B-Drug B-ADR I-ADR O O O O O O O

Table 3: Comparison of the predictions of the proposed approach with the baseline models.

Type-1
Sentence 1 too much zoloft and seroquel to get the horn my life is lie
Actual O O B-Drug O B-Drug O O O B-ADR I-ADR I-ADR O O
Predicted O O B-Drug O B-Drug O O O O O O O O

Type-2
Sentence 2 pain in upper right arm could not sleep on it or move it behind my back
Actual B-ADR I-ADR I-ADR I-ADR I-ADR O O O O O O O O O O O
Predicted B-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR I-ADR

Type-3
Sentence 3 terrible joint pain could not move shoulder hip hurt
Actual O B-ADR B-ADR B-ADR I-ADR I-ADR I-ADR B-ADR I-ADR
Predicted B-ADR I-ADR I-ADR B-ADR I-ADR I-ADR I-ADR I-ADR I-ADR

Table 4: Exemplar description of various types of error. Here, Type-1 represent the error due ‘Presence of implicit
mention’. Type-2 represent the error due to ‘Issue in annotation’ and Type-3 represents the error of type ‘Boundary
detection problem’.

In the sentence 2, we observe that, only MT-
LSTM-Atten model is able to predict the partial
ADR (i.e. seizure instead of tonic-clonic seizure.),
while our model is able to predict the full ADR
phrase correctly.

6.1 Error Analysis

In this subsection, we analyze the different sources
of errors which lead to mis-classification. We
closely study the false positive and false negative
instances and come up with the following obser-
vations:
(1) Presence of implicit mention: We observe
that in the Twitter dataset user often tends to
use very implicit and creative language to de-
scribe their adverse drug reaction. For e.g., in the
sentence-1 of Table-4, user describes his ADR as
‘horn my life’ by taking drug (zoloft and seroquel).
(2) Issue in annotation: For the CADEC dataset,
we observe some of the sentences are not com-
pletely tagged. For e.g., in the sentence-2 of Table-
4, here ‘could not sleep’, ‘move it behind my back’
is also an ADR, in addition to ‘pain in upper right
arm’. However, the first two ADRs are not labeled
in the dataset.
(3) Boundary detection problem: We also ob-
serve that, our system sometimes fails to detect
the proper boundary. This might be because of
the task sharing feature, which learns the feature
distributions across the dataset which may not be
correct for the given dataset as shown in sentence-
3 of Table-4.

7 Conclusion

In this paper, we have proposed an end-to-end
multi-task framework that provides a unified so-
lution for pharmacovigilance mining. We have
utilized an adversarial training based multi-task
framework, which ensures that task-specific and
task shared features are not contaminated. We
evaluated this framework on three benchmark
pharmacovigilance datasets. Our results demon-
strate the capability of our model across all the
datasets. In future, we would like to assist the
model with multiple linguistic aspects of social
media text like figurative languages.
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