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Multi-modal affect analysis (e.g., sentiment and emotion analysis) is an interdisciplinary study and has been
an emerging and prominent field in Natural Language Processing and Computer Vision. The effective fusion
of multiple modalities (e.g., text, acoustic, or visual frames) is a non-trivial task, as these modalities, often,
carry distinct and diverse information, and do not contribute equally. The issue further escalates when these
data contain noise. In this article, we study the concept of multi-task learning for multi-modal affect anal-
ysis and explore a contextual inter-modal attention framework that aims to leverage the association among
the neighboring utterances and their multi-modal information. In general, sentiments and emotions have
inter-dependence on each other (e.g., anger — negative or happy — positive). In our current work, we ex-
ploit the relatedness among the participating tasks in the multi-task framework. We define three different
multi-task setups, each having two tasks, i.e., sentiment & emotion classification, sentiment classification &
sentiment intensity prediction, and emotion classificati on & emotion intensity prediction. Our evaluation of
the proposed system on the CMU-Multi-modal Opinion Sentiment and Emotion Intensity benchmark dataset
suggests that, in comparison with the single-task learning framework, our multi-task framework yields better
performance for the inter-related participating tasks. Further, comparative studies show that our proposed
approach attains state-of-the-art performance for most of the cases.
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1 INTRODUCTION

In the last decade, the tremendous growth of social media platforms has overwhelmed the Internet
with a variety of distinct and diverse information such as videos, images, audios, and text. Sharing a
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Fig. 1. Both person are uttering “/’m ok.” in two separate videos with opposite emotions. The facial expression
of the left person (lady) implies the “happy” emotion, while the facial expression of the right person (gen-
tleman) conveys his sadness (or possibly anger as well). For the first case, the textual representation might
be adequate for predicting the emotion as “happy”; however, for the second case, it is clearly not sufficient

for the prediction of sadness as emotion. Multi-modal analysis aims to leverage the multiple sources for the
desirable predictions.

video on social media platforms is more convenient for users than expressing their feelings through
text. They freely discuss current affairs, raise their concerns, or express their opinions in an open
and convenient environment facilitated by these social media platforms. On the other hand, var-
ious organizations utilize these user inputs as feedback to refine their product or services. The
amount of information generated daily through different social media platforms is quite colossal,
and therefore researchers are quite interested in mining this vast information.

This knowledge extracted by tracking attitudes and feelings on the web, can be used as a source
of honest user opinion for services, products, brands, and people. It may also be used for under-
standing the conversations and identifying relevant content. Organizations want to process this
information as useful feedback to improve their products and services. Hence, multi-modal anal-
ysis (e.g., emotion recognition [33], sentiment analysis [41], and questioning-answering [46]) has
been an emerging field of study nowadays.

A video, in general, has all the ingredients of multi-modal information such as visual frames,
acoustics, and transcripts. The prime challenge in the multi-modal analysis is to fuse these distinct
information to have the correct predictions. However, the fusion of multi-modal information is
not always effective, as different sources often bring their characteristics, and some of them may
contain noise as well. For example, there might be some disturbances or noise present in a video
due to which acoustic features like tone, intensity, energy, and pitch, cannot contribute equally in
the actual prediction.

Further, some representations can be ambiguous, as well. For example, the textual representa-
tion “I'm ok.” cannot reveal the true emotion for a sad or angry person. On the other hand, the
same representation can belong to a “happy” person as well. Therefore, in such cases, it is often de-
sirable to have other sources of representations to resolve the ambiguity. For the above case, visual
expressions (or acoustic features like tone and pitch) can assist the model in the disambiguation
of the prediction. An example scenario is depicted in Figure 1.

The multi-task learning (MTL) framework aims to achieve generalization for the participating
tasks. It exploits the inter-relatedness among the participating tasks to improve the individual
performance through a shared representation. Overall, the MTL framework has three basic ad-
vantages over the single-task learning (STL) framework. These are, (a) to achieve generalization
over the participating tasks; (b) to improve the performance of individual tasks by leveraging the
richness of other participating tasks; and (c) to the reduces complexity of the overall system (i.e.,
multiple problems/tasks are solved in an MTL system simultaneously).

Therefore, motivated by the advantages of MTL, in our current work, we propose an MTL frame-
work that involves the various tasks of sentiment and emotion analysis, i.e., sentiment classifica-
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tion, sentiment intensity prediction, emotion classification, and emotion intensity prediction. We
define the following three sets of tasks: i.e., sentiment & emotion classification (S¢, Ec), sentiment
classification & sentiment intensity prediction (S¢, Sy), and emotion classification & emotion in-
tensity prediction (Ec, Ey), for our MTL framework. For any particular set of tasks (e.g., sentiment
and emotion classification), we aim to exploit the inter-relatedness among them to extract the
predictions for all the tasks (e.g., sentiment prediction as negative or positive and emotion predic-
tion as happy, surprise, sad, fear, disgust, or anger). For instance, the information about anger and
sad emotions can assist in the prediction of negative sentiment and vice-versa. Similarly, “happy”
emotion should assist in the prediction of “positive” sentiment and so on.

In our proposed framework, we utilize the contextual multi-modal information for learning the
expressed sentiments and/or emotions for a sequence of utterances in a video. Since the diversity
among different modalities across contextual utterances plays a very crucial role in multi-modal
analysis, hence one key challenge in our contextual multi-modality framework is the effective fu-
sion of the input modalities considering the neighboring utterances for the prediction. Therefore,
we also introduce an attention mechanism to calculate attention scores for both contextual ut-
terances and inter-modalities. Our proposed approach applies attention over both these sources
of information simultaneously (i.e., contextual utterance and inter-modal information), and aims
to reveal the most contributing features for the classification. We hypothesize that applying at-
tention to contributing neighboring utterances and/or multi-modal representations may assist the
network to learn in a better way. Let us assume that an utterance Uy having Ty (i.e., Textual fea-
tures), Vy (i.e., Visual features), and A, (i.e., Acoustic features). Now let contextual utterance of U,
be U, having Textual, Acoustic, and Visual features as Ty, A, and V,;, respectively. To produce bet-
ter and richer multi-utterance contextual-attention representation of input utterances, our model
computes attention (i.e., relatedness) among different modalities (like Ty and T, Ty and V,, and
T, and A) of target and contextual utterances. We evaluate our proposed approach on the CMU-
Multi-modal Opinion Sentiment and Emotion Intensity (MOSEI) dataset [56], and observe that
the proposed method outperforms various existing state-of-the-art models for both sentiment and
emotion analysis.

1.1 Problem Definition

It is true that sentiments [29] and emotions [18] are closely related to each other. Most of the emo-
tional states have a clear distinction of being a positive or negative situation. Emotional states,
e.g., “happy” and “surprise'” indicate positive scenarios, while the emotions “sad,” “disgust,” “ fear,”
and “anger” suggest negative situations. Further, in many cases, it is desirable to know the degree
of sentiment (or emotion) along with the sentiment (or emotion) class as well. The degree of sen-
timent (or emotion) corresponds to the intensity level of the expressed sentiment (or emotion). A
user might express the same sentiment (e.g., “positive”) in two different scenarios with different in-
tensities. For instance, one can be extreme (e.g., “hurray... we won the world cup!”), while the other
can be mild (e.g., “its a beautiful day today!’). The sentiment in both the cases is “positive”; how-
ever, they are distant apart on the intensity spectrum and may not need similar kind of response,
action, or attention. Hence, knowledge of the sentiment class along with the degree are important
pieces of information and often desirable in several real-world applications, e.g., e-commerce and
politics.

Motivated by the association of sentiment & emotion classification, classification & intensity
prediction, and the effectiveness of the MTL paradigm, we propose a multi-task framework that
learns the association among the participating tasks for enhanced performance. In particular, we

In some cases, surprise can also belong to a negative situation.
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define three multi-task setups considering the sentiment classification, sentiment intensity predic-
tion, emotion classification, and emotion intensity prediction tasks as follows:

—Sentiment Classification and Emotion Classification (S¢, Ec);
—Sentiment Classification and Sentiment Intensity Prediction (Sc¢, Sy); and
—Emotion Classification and Emotion Intensity Prediction (Ec, Ej).

The first setup aims to exploit the inter-relatedness between the classification tasks on two dimen-
sions of the affective analysis, while the other two setups aim to leverage the relationship among
the classification and its degree on a single affect dimension (i.e., either sentiment or emotion). We
furnish the details of these three setups in Section 4.3.

Our current work is an extension of one of our previous efforts on MTL for multi-modal sen-
timent and emotion analysis [1]. However, the main differences between our current work and
[1] are as follows: (a) In [1], we solve the problem of sentiment and emotion classification in a
multi-task framework, wherein our current work, we also include two other sets of tasks for MTL,
i.e., sentiment classification & sentiment intensity prediction and emotion classification & emo-
tion intensity prediction; (b) unlike [1], our current work also studies the relationship between the
classification and regression problems in the MTL framework for two affect dimensions, i.e., senti-
ment and emotion analysis; (c) we provide a comprehensive qualitative analysis of the STL vs. MTL
framework for all four tasks; and (d) in addition to the sentiment and emotion classification, we pro-
vide state-of-the-art results for the sentiment intensity prediction and emotion intensity prediction
tasks and also report the improved emotion classification performance in E¢, E; multi-task setup.

We highlight our contributions as follows: (a) we leverage the inter-dependence of two related tasks
in improving each other’s performance using an effective multi-modal framework; (b) we propose three
multi-task setups for four sentiment and emotion analysis tasks; (c) we explore the relatedness among
two classes of tasks (i.e., classification-classification and classification-regression) in the multi-task
framework; (d) we develop a context-based inter-modal attention module that effectively attends to
the contextual utterances and the available modality inputs as per their importance to the current
utterance. For example, let a video V' = uy, uy, . . ., u10 has 10 utterances and we want to predict the
sentiment/emotion of an utterance u;, i € {1...10}. Further, assume that (which is given in our
case) for each utterance we have three inputs, i.e., < ulT >, < u{‘ >, < ulV >, corresponding to the
available modalities (i.e., text, acoustic and visual), and to classify an utterance uy, textual features of
uy & uy, acoustic features of u; and visual features of ug, us & uy are of higher importance others.
Our contextual inter-modal (CIM) attention framework can attend to such diverse and distinct
information; and (e) we achieve state-of-the-art performance for all the four tasks.

The organization of the article is as follows. In Section 2, we present a review of the existing
literature concerning multi-modal and multi-task sentiment/emotion analysis. Various details of
the proposed methodology are described in Section 3. Experimental results and detailed analysis
are furnished in Section 4. Finally, in Section 5, we discuss our conclusions and potential future
directions.

2 RELATED WORK

A study on multi-modal analysis suggests that it is an extended area as compared to text-based
analysis. In this section, we present a brief survey on the research for multi-modal sentiment and
emotion analysis.

2.1 Multi-modal Sentiment Analysis

In recent years, multi-modal sentiment analysis has become an emerging area of study and gained
a lot of attention worldwide [21, 26, 34, 56, 57]. A comprehensive review of the recent multi-modal
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sentiment analysis works has been studied in [32]. A cross-modality consistent regression (CCR)
model is proposed in [53], which utilized both the state-of-the-art visual and textual sentiment
analysis techniques. The authors fine-tuned a convolutional neural network (CNN) for extracting
the visual features and then trained a distributed paragraph vector model to learn the textual fea-
tures. On top of these textual and visual features, the authors learned a multi-modal regression
model for the final sentiment classification. Zadeh et al. [58] proposed a multi-modal dictionary-
based framework to learn the visual and acoustic features when expressing sentiment. The authors
also introduced a multi-modal dataset, i.e., the CMU Multi-modal Opinion Sentiment Intensity
(CMU-MOSI) dataset, the first of its kind to enable the studies of multi-modal sentiment inten-
sity analysis, and calculated the regressor’s performance based on mean absolute error. In another
work, Wang et al. [49] proposed a select-additive learning approach that improves the generaliz-
ability of trained neural networks for the multi-modal sentiment analysis. An application of Tensor
Fusion Network (TEN) is introduced in [54], for the effective fusion of input modalities. The multi-
modality TFN framework aims at learning both the intra- and inter-dynamics of the participating
modalities (i.e., text, acoustic, and visual). They extracted the textual features by GloVe [31] embed-
dings, visual features using a three-dimensional CNN [24], and acoustic features by CovaRep [14].
On the other hand, Chen et al. [11] proposed an attention-based Gated Multi-modal Embedding
(GME) framework for the word-level fusion of multi-modality inputs.

Most of these prior research primarily focused on extracting features directly from each modal-
ity (separately), and then fuse these features for the final classification. Thus, these often ignore
the deep semantic correlations between the modalities while building the models. A deep semantic
network, MultiSentiNet, was proposed in [52] to model the semantics and correlation between text
and images. The authors extracted the textual and visual features from a long short-time memory
(LSTM) and VGGNet [45] model, respectively. They, at first, used a fusion layer for aggregating
the extracted features to obtain a final multi-modal representation, and then a softmax classifier is
employed at the top for sentiment classification. Further, previous works did not account for the
contextual information while leaning the sentiments of utterances in a video. Poria et al. [34] pro-
posed an LSTM based framework for the sentiment classification to capture the contextual depen-
dencies among the utterances. In another work, a multi-kernel learning-based method is proposed
to combine the three modality inputs (i.e., textual, acoustic, and visual) in [37]. A multi-attention
block (MAB) framework is introduced for sentiment classification to capture the inter-modality
information across modalities in [57]. Blanchard et al. [6] proposed a multi-modal fusion model
that exclusively uses high-level visual and acoustic features for the sentiment classification. Sheikh
et al. [44] proposed a deep canonical correlation analyzer that focuses on improving the represen-
tations of modalities (text and acoustic) for sentiment analysis. An application of the TFN [54] is
found in [41], where the authors employ the TFN network to fuse the multiple modalities at each
time-step in a RNN.

Recently, a quantum-inspired bi-modal (text & image) based sentiment analysis framework was
introduced in [59] to fill the semantic gap and model the correlations between the two modalities
via a density matrix. Deng et al. [15] developed a multi-modal neural architecture for emotion
behavior analysis with respect to the valence and arousal on a continuous scale. Their system
first integrates visual information over the time using an LSTM network and then combines it
with utterance level acoustic and text cues. Cummins et al. [13] introduced a different Bag-of-
Words (BoWs) paradigms to aid sentiment detection. The authors extracted the textual features
by Google2SRT2? toolkit, the visual features by OpenFace toolkit [4], and the acoustic features by

Zhttp://google2srt.sourceforge.net/en/.
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DeepSpectrum [2]. Subsequently, the authors quantified the extracted features into a BoW repre-
sentation using the openXBOW toolkit [43].

In another work, Cambria et al. [8] explored the speaker-dependent and speaker-independent
dimensions of the multimodal sentiment analysis. They studied the generalizability of the model
through a context-based framework. Chauhan et al. [10] exploit the interaction between a pair of
modalities through an application of the Inter-modal Interaction Module (IIM) that closely follows
the concepts of an auto-encoder. The interaction among the modalities was utilized in a RNNs
based attention framework for the multi-modal sentiment and emotion analysis.

2.2 Multi-modal Emotion Recognition

Poria et al. [36] proposed a multi-kernel fusion technique for emotion prediction, where the au-
thors employed a deep CNN for extracting the textual features and fused it with other modali-
ties (visual & acoustic). An attention-based CNN for multi-modal emotion recognition has been
introduced in [25]. The authors employed separate CNN’s to extract the features from speech
spectrograms and embedded word sequences and applied an attention mechanism to learn the
multi-modal representation between speech and textual modalities. In another work, a convolu-
tional deep belief network (CDBN) framework is proposed for multi-modal emotion recognition
n [40]. They showed that CDBN learns to extract the salient multi-modal (acoustic and visual)
features for emotion classification in an unsupervised manner. Another CNN-based multi-modal
emotion recognition system was proposed in [48]. The author utilized a CNN for extracting the
textual features, while a deep residual network of 50 layers was employed for the visual modality.

A feature level fusion based self-attention mechanism is proposed for multi-modal emotion de-
tection in [21]. Zadeh et al. [55] proposed a memory fusion network (MFN) that explicitly accounts
for both view-specific interactions and cross-view interactions. Authors employed LSTM for the
view-specific interaction, whereas for the cross-view interaction, an attention mechanism has been
proposed. Recently, a dynamic fusion graph (DFG) for the fusion of tri-modal inputs has been pro-
posed in [56]. The authors extended the MFN [55] by incorporating the DFG (called as Graph-MFN)
for the fusion. They also introduced a multi-modal sentiment and emotion recognition dataset (i.e.,
CMU-MOSEI), consisting of more than 22K utterances. In another work, Williams et al. [50] pro-
posed an input-level fusion technique followed by a deep neural network layer (i.e., CNN, LSTM
& GRU) to combine three modalities for emotion intensity prediction.

A recursive multi-attention with a shared external memory-based approach is proposed for
emotion recognition in [5]. Patwardhan et al. [30] proposed a support vector machine (SVM)-based
feature level fusion mechanism for mixed emotion detection. They employed openEar toolkit and
FaceAPI for the feature extraction of multi-modal audio and visual continuous data, respectively.
In another work, Fu et al. [19] proposed an auto-encoder and canonical correlation analysis-based
approach for emotion recognition. At first, the authors employed a modality-wise sparse auto-
encoder to extract the intermediate representation. Subsequently, a shared feature representation
is formed based on the correlation coefficients. The shared multi-modal feature representation was
then utilized for emotion recognition.

Rahdari et al. [38] proposed a multimodal emotion recognition system using facial landmarks.
They employed two modalities, i.e., affective speech and facial expression, for the recognition of
emotions. For affective speech, the common low-level descriptors and spectral audio features were
extracted, whereas for the visual feature extraction, they exploited the displacement of specific
landmarks across consecutive frames of an utterance. In [28], the authors addressed the issues
related to the utterance with one or more missing modalities, i.e., their framework handled an
arbitrary number of modalities during emotion recognition. They exploited the presence of three
modalities (i.e., text, image, and hashtags) in their network, and the absence of any modality did
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not have any consequences on the network architecture. Huang et al. [23] proposed a speech
emotion recognition system considering the verbal and nonverbal speech sounds. At first, the
authors developed an SVM-based verbal/nonverbal sound detector, and subsequently, for each
verbal/nonverbal segment, the emotion and sound features were extracted. Finally, a sequence of
the feature vector for the entire dialog was fed to an LSTM based architecture, which predicted
the emotional sequence of the dialog.

2.3 Multi-task Learning for Sentiment and Emotion Analysis

To the best of our knowledge, the MTL for multi-modal sentiment and emotion analysis has not
been studied except for our previous attempt [1]. However, there are a few studies at the intersec-
tion of the MTL and multi-modal analysis for different domains such as autonomous driving [12],
semantic goal navigation, and embodied question answering [9].

In general, the MTL for sentiment and emotion analysis seems an exciting field of study [3, 3, 16,
42, 51]. A multi-task framework has been introduced for emotion recognition in two-dimensional
continuous space in [51]. A recurrent neural network (RNN)-based MTL framework for fine-
grained sentiment classification was proposed in [3]. The authors considered the 3-way and 5-way
classification as the two tasks in the MTL framework. In another work, Deriu et al. [16] proposed
a deep CNN-based MTL framework for sentiment classification of Italian Twitter messages. Their
MTL framework learns three tasks related to sentiment analysis, i.e., subjectivity prediction, po-
larity prediction, and irony detection.

Our proposed approach differs from the various existing systems, primarily, on the basis of the
contextual inter-modal attention mechanism. A few existing works [6, 36, 54, 58] do not account
for the contextual information at all, while some [34] considered the context of an utterance as a
straight-forward sequence, i.e., no attention mechanism was employed. In another work, Zadeh
et al. [57] computed the attention weights over the multiple modalities; however, they ignored the
contextual information. In contrast, in our proposed work, we compute attention weights over
the contextual utterances across all the available multi-modal inputs. Thus, it ensures to reveal
the contributing features across multiple modalities and contextual utterances for sentiment and
emotion analysis simultaneously. Moreover, our proposed work handles two related problems,
i.e., sentiment and emotion analysis, simultaneously in a multi-modal scenario—one of the very
first attempts to the best of our knowledge.

In [46], a related attention mechanism is studied for visual question-answering. In contrast to
our contextual inter-modal attention mechanism, the authors apply attention to the spatial domain
over different positions of the image. In one of our earlier works, we have proposed an inter-modal
attention framework for the multi-modal sentiment analysis [20]. However, the key differences are,
(a) the system [20] addressed only the sentiment classification, while our current work addresses
four different tasks, i.e., sentiment classification, emotion classification, sentiment intensity pre-
diction, and emotion intensity prediction; and (b) since only one task (i.e., sentiment classification)
was addressed in [20], the underlying framework was an STL framework. In comparison, we solve
four related problems in three MTL setups.

3 MULTI-TASK LEARNING FOR MULTI-MODAL ANALYSIS

In our proposed framework, we aim to leverage the multi-modal and contextual information in
a MTL framework for the prediction of multiple tasks simultaneously. As stated earlier, a video
consists of a sequence of utterances, and their semantics often have inter-dependencies on each
other. For each utterance in a video, we aim to predict either the sentiment and emotion, sentiment
and intensity, or emotion and intensity together. We utilize all three available modalities, i.e., text,
acoustic, and visual, for learning the model. Initially, extracted features from each modality are fed
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Fig. 2. Overall architecture of the proposed framework. CIM attention computation between visual and text
modality.

to three parallel bidirectional gated recurrent units (Bi-GRU) layers (i.e., one Bi-GRU per modal-
ity input). Each Bi-GRU layer captures the modality-wise sequential pattern for all the utterances
in the sequence. Once the contextual information is captured, we compute the joint-association
among the utterances and the participating modalities, through our contextual inter-modal (CIM)
attention mechanism. The intuition behind the CIM mechanism to leverage the contributing fea-
tures in the contextual vicinity of an utterance. Also, it enables the model to filter the redundant or
noisy features to participate in the final prediction. Our CIM attention module operates on a pair of
input modalities, i.e., text-acoustic, visual-acoustic, and text-visual. Residual skip-connection [22] is
an efficient strategy to regulate the flow of the gradient down to the lower layers. It offers a bypass
connection to the lower layers by skipping the complex modules within the network. Therefore,
motivated by the residual skip connection [22], the outputs of pair-wise attentions along with the
representations of individual modalities are concatenated. Finally, the concatenated representa-
tion is shared across the two branches of our proposed network—corresponding to two tasks, i.e.,
one for each task in the multi-task framework. The shared representation will receive gradients of
error from both the branches and accordingly adjust the weights of the models. Thus, the shared
representations will not be biased to any particular task, and it will assist the model in achieving
generalization. The empirical evidence supports our hypothesis (c.f. Table 3). A high-level archi-
tecture is depicted in Figure 2.

3.1 Contextual Inter-modal Attention Framework

Our contextual inter-modal attention framework works on a pair of modalities. At first, we capture
the cross-modality information by computing a pair of matching matrices M;, M, € R***, where
“u”is the number of utterances in the video. Further, to capture the contextual dependencies, we
compute the probability distribution scores (N7, Ny € R**¥) over each utterance of cross-modality
matrices M;, M, using a softmax function. This essentially computes the attention weights for the
contextual utterances. Subsequently, we apply soft attention over the contextual inter-modal ma-

trices to compute the modality-wise attentive representations (O;&O,). Finally, a multiplicative
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gating mechanism [17] (A;&A;) is introduced to attend the important components of multiple
modalities and utterances. The concatenated attention matrix of A;&A;, then acts as the output of
our CIM attention framework. The entire process is repeated for each pair-wise modalities, i.e.,
text-visual, acoustic-visual, and text-acoustic. We illustrate and summarize the proposed method-
ology in Algorithm 1.

ALGORITHM 1: Multi-task Multi-modal Emotion and Sentiment (MMES)

procedure MMES(t, v, a)
d « 100 > GRU dimension
T « biGRU7(t,d)
V « biGRUy (v, d)
A « biGRU4(a,d)
Atnty « CIM-Attention(T, V)
Atnay « CIM-Attention(A, V)
Atnry < CIM-Attention(T, A)
Sharedgep < [Atnry, Atnay, Atnta, T,V,A] > Concatenation and residual connections
polarity « Sentiment(Sharedg.)
emotion « Emotion(Sharedg.p)
return [polarity, emotion)]

procedure CIM-ATTENTION(X, Y)
/“Inter-modality information®/

M; « X.YT
My « Y.XT
/*Contextual Inter-modal attention®/
fori,jel,...,udo > u = #utterances
. My (i.))
Ni(i, j) < W
. My(i.j)
No(i, j) « —21{1 Z}\Iz(i,k)
O; « N..Y
OZ — Nz X
/*Multiplicative gating™/
A< 0,0X > O: Element-wise multiplication
Az — 02 oY

return [A;, A;]

4 DATASETS, EXPERIMENTS, AND ANALYSIS

In this section, we describe the datasets used for our experiments and report the results along with
necessary analysis.

4.1 Datasets
We perform all experiments on the CMU-MOSEI dataset [56]. It consists of a total of 3,229 videos
from 1,000 speakers, which results in approximately 23,000 utterances. The training, validation,
and test splits are 16,216, 1,835, and 4,625 utterances, respectively.

There are six emotion values associated with each utterance, which represent the degree of
emotion for surprise, happy, sad, fear, disgust, and anger. Each utterance can have zero (no emotion),
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Table 1. Dataset Statistics for CMU-MOSEI

Sentiment Emotion

Speakers | Videos Utterance | Positive Negative | Anger Disgust Fear Happy Sad Surprise

Train 2,250 16,216 11,499 4,717 3,506 2,946 1,306 8,673 4,233 1,631
Dev 1,000 300 1,835 1,333 502 334 280 163 978 511 194
Test 679 4,625 3,281 1,344 1,063 802 381 2,484 1,112 437

(a) Each utterance contains multi-modal information.

Emotion(s)
No | One | Two | Three | Four | Five | Six
# Utterances | 3372 | 11,050 | 5526 | 2084 | 553 | 84 | 8

(b) Statistics of multi-label emotions.

one (single emotion), or more than one emotion values (multi-label). For the experiment, we take
7-classes (6 emotions + 1 no emotion), and we try to optimize the binary-cross entropy loss for each
of the classes. While in the case of sentiment prediction, the classes are disjoint, i.e., value < 0
represents the negative (Neg) sentiment, and value > 0 represents the positive (Pos) sentiment.
Detailed statistics of the CMU-MOSEI dataset are shown in Table 1. The dataset is available to
download through the CMU Multi-modal Data SDK>.

4.2 Feature Extraction

The CMU-MOSEI dataset contains both raw data as well as pre-computed feature vectors for every
word in an utterance. For the experiments, we make use of the pre-computed feature vectors. The
feature vectors correspond to the GloVe [31] embeddings, CovaRep [14] representation, and Facets*
representation for the textual, acoustic, and visual features, respectively. To obtain feature repre-
sentation for an utterance, we compute the average over all words in the utterance. The resulting
feature vectors have dimensions of 300, 74, and 35 for the text, acoustic, and visual, respectively.

4.3 Multi-task Frameworks

As mentioned in Section 1, the MTL paradigm aims to leverage the inter-dependence among the
participating tasks. In this work, we employ an MTL framework for three different problems (sen-
timent, emotion, and intensity) involving four tasks, i.e., sentiment classification, sentiment inten-
sity prediction, emotion classification, and emotion intensity prediction. Though the basic archi-
tecture for all three sets of multi-tasks is the same, the loss function and activations at the output
layer differ according to the underlying tasks. Below, we define our three multi-task setups.

(1) Sentiment Classification and Emotion Classification (Sc, Ec): In this multi-task
setup, we perform two classification tasks, i.e., sentiment classification and emotion classi-
fication, together. The shared representation Sharedg.p is fed to both sentiment and emo-
tion branches for the respective predictions. We use the softmax layer for the sentiment
prediction, whereas a sigmoid layer with seven neurons (corresponding to 6 emotions + 1
no emotion) is employed to predict the mixed emotions. For emotion prediction, we define
a threshold and take all the emotion classes whose respective values are above the thresh-
old. We optimize categorical cross-entropy and binary cross-entropy losses for the sentiment
and emotion classification, respectively.

Shttps://github.com/A2Zadeh/CMU-MultimodalDataSDK.
*https://pair-code.github.io/facets/.
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(2) Sentiment Classification and Sentiment Intensity Prediction (Sc, Sr): Knowledge
of sentiment class along with the degree of sentiment are important piece of information
in many cases. In this framework, we learn the sentiment classification and its intensity
in a multi-task framework. Similar to the earlier case, we utilize softmax and categorical
cross-entropy loss for the sentiment prediction. For sentiment intensity prediction, we em-
ploy tanh activation function with binary cross-entropy for predicting the intensity in the
range [—1, +1] (we normalize the sentiment intensity range [—-3, +3] to [—1, +1] for the
experiments).

(3) Emotion Classification and Emotion Intensity Prediction (Ec, Ey): Similar to the
multi-task setup for sentiment classification and sentiment intensity prediction, in this
multi-task setup, we perform emotion classification and emotion intensity prediction to-
gether. For emotion intensity prediction, we normalize the intensity score in the range [0,
1] and use the sigmoid activation function with binary cross-entropyloss for the prediction.

4.4 Experiments

We use the Python-based Keras® library with TensorFlow® as the backend for the implementation
of our models. For evaluation, we compute FI-score and accuracy values for sentiment classifi-
cation and FI-score and weighted-accuracy (W-Acc) [47] for emotion classification. For emotion
classification, we choose weighted accuracy as an evaluation metric due to unbalanced samples
across various emotions, and it is also in line with the other existing works [56]. The formulation

of W-Acc is as follows:
TP x N/P+ TN

2N
where TP and TN refer to the true positive and true negative predictions, whereas P and N signify
the total number of positive (i.e., true positive + false negative) and negative (i.e., false positive +
true negative) samples in the dataset. To measure the performance of intensity prediction tasks, i.e.,
sentiment intensity prediction and emotion intensity prediction, we compute the mean-squared-
error (MSE), mean-absolute-error (MAE), Pearson correlation score (PEAR), and Cosine similarity
(COS) as the evaluation metrics. While higher values of Pearson score and Cosine similarity are the
indicators of better performance, lower values of MSE and MAE correspond to better performance.

We use Bi-directional GRUs having 300 neurons, each followed by a fully-connected layer con-
sisting of 100 neurons. Utilizing the fully-connected layer, we project the input features of all the
three modalities to the same dimension. We set dropout = 0.3 as a measure of regularization for
the experiments. In addition, we use dropout = 0.3 for the recurrent layers. We employ rectified
linear unit (ReLU) as the activation function in the intermediate layers. For training the network
we set the batch size = 32 and use Adam optimizer with cross-entropy as the loss functions. We run
the experiments for 50 epochs while saving the best epoch seen so far. We run each experiment
5 times and report the average of the accuracies in the article. We pad all the utterances up to the
maximum length, i.e., 98. A summary of the hyper-parameters used in the experiments are listed
in Table 2. Code of the article is available at [https://bit.ly/3azSPs1].

Since our proposed approach requires at least two modalities to compute the contextual inter-
modal attention, we experiment with bi-modal and tri-modal input combinations for the proposed
approach, i.e., taking text-visual, text-acoustic, acoustic-visual, and text-visual-acoustic at a time. As
our proposed framework does not account for uni-modal inputs, for completeness, we also exper-
iment with a variant of the proposed approach where we apply self-attention on the utterances

W-Acc =

Shttps://keras.io.
Shttps://www.tensorflow.org/.
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Table 2. Model Configurations

Parameters | Values

Bi-GRU 2x200 neurons, dropout = 0.3
Dense layer 100 neurons, dropout = 0.3
Activation ReLU

Output Softmax (Sent) & Sigmoid (Emo)
Optimizer Adam (Ir = 0.001)

Loss Binary cross-entropy
Threshold 0.4 (F1) & 0.2 (W-Acc) for multi-label
Batch 16

Epochs 50

of input modality. Similar to the bi-modal and tri-modal scenarios, the uni-modal input is, at first,
passed through a Bi-GRU layer, which learns the contextual information from the sequence of
utterances in a video. Subsequently, we compute the self-attention on the hidden representation
(i.e., u X d), and forward it to the upper layers for prediction.

In a single-task framework, we build separate systems for each task at hand, i.e., sentiment clas-
sification, sentiment intensity prediction, emotion classification, and emotion intensity prediction,
whereas in multi-task framework a joint-model is learned for the multiple tasks. As mentioned in
Section 4.3, we experiment with all three set of tasks for our MTL, i.e., sentiment & emotion classifi-
cation (Sc, E¢), sentiment classification & intensity prediction (S¢, Sy) and emotion classification &
intensity prediction (Ec, Er). We report the experimental results of our STL and MTL frameworks
in Table 3.

To enable convenient performance analysis of the STL and MTL frameworks for a specific task,
we prefer to report the results in a task-specific order against the framework-specific order. The
first row of Tables 3(a)-(d) reports the obtained results for the four problems (i.e., Sc, Ec, Sy, and
Ep) in a STL framework. Whereas, the other rows in the tables (i.e., except the first row) report
results for one of the multi-task frameworks (c.f. Section 4.3). For instance, the second and third
rows of the Table 3(a) report the sentiment classification (S¢) results obtained in the (Sc, E¢) and
(Sc, S1) MTL frameworks, respectively. The results of other tasks in the (S¢, E¢) and (S¢, S;) MTL
frameworks (i.e., Ec and Sj) are reported in their respective tables (i.e., second rows of Table 3(b)
and 3(c) for E¢ and Sy, respectively). Furthermore, each of these rows reports results for different
evaluation metrics and seven combinations of the available input modalities (i.e., text (T), acoustics
(A), and visual (V)).

In sentiment classification (S¢) task, our single-task framework reports an F1-score of 77.67%
and accuracy value of 79.8% for the tri-modal inputs, as depicted in Table 3(a). Our proposed MTL
framework obtains an improved performance for both the setups that include sentiment classifica-
tion as one of the tasks, i.e., (Sc, Ec) and (Sc, St) MTL framework. The (Sc, E¢) framework yields
an F1-score and accuracy value of 78.8% and 80.5% with an improvement of 1.2% and 0.7% over the
STL framework, respectively. We also observe that the multi-task framework reports better score
for the uni-modal and bi-modal input combinations along with the tri-modal input combination.
Similarly to the (Sc, Ec), we obtain the performance improvement for all the input combinations
in the (S¢, S;) MTL framework as well.

In Table 3(b), we report the performance of our proposed single-task and multi-task approaches
for emotion classification. To obtain multi-labels for emotion classification, we set the threshold as
0.4 & 0.2 for F1-score and weighted accuracy, respectively. We obtain 77.71% F1-score, and 60.88%
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Table 3. STL and MTL Frameworks for the Proposed Approach
Tasks F1-score Accuracy
T A V | T+V T+A A+V | T+A+V T A V | T+V T+A A+V | T+A+V
STL Sc 75.1 67.9 663 | 77.0 76,5 69.6 77.6 782 748 758 | 794 79.7 76.6 79.8
Sc,Ec || 775 721 69.1| 787 78.6 758 78.8 79.7 757 765 | 80.4 802 774 80.5
MTL Sc, St 77.6 725 693 | 786 786 759 78.9 79.9 76,5 764 | 80.0 800 77.9 80.1
(a) Sentiment Classification (S¢)
Tasks F1-score Weighted-Accuracy
T A A% | T+V T+A A+V | T+A+V T A V | T+V T+A A+V | T+A+V
STL Ec 759 723 736 | 775 76.8 76.0 71.7 58.0 56.7 53.7| 60.1 59.6 58.0 60.8
Sc,Ec || 76.9 746 754 | 785 77.6 77.0 78.6 60.2 56.2 57.5| 625 605 593 62.8
MITL Ec,Er || 780 748 77.1| 79.1 782 78.1 79.2 615 583 56.7| 63.0 616 60.3 63.3
(b) Emotion Classification (Ec)
Tasks Pearson Correlation Cosine similarity
T A \'% | T+V  T+A A+V | T+A+V T A \Y% T+V T+A A+V | T+A+V
STL Sr 0.544 0.416 0.349 | 0.557 0.549 0.436 0.559 0.553 0.424 0.364 | 0.567 0.561 0.451 0.568
MTL | S¢, St 0.554 0.421 0.365 | 0.566 0.558 0.456 0.568 0.560 0.431 0.382 | 0.574 0.566 0.469 0.576
Tasks MSE MAE
T A \% | T+V T+A A+V | T+A+V T A v T+V T+A A+V | T+A+V
STL Sr 0.871 1.045 1.088 | 0.854 0.860 0.999 0.848 0.702 0.793 0.799 | 0.699 0.700 0.768 0.699
MTL | Sc, Sy || 0.863 1.032 1.072 | 0.841 0.853 0.978 0.838 0.701 0.791 0.792 | 0.698 0.698 0.762 0.697
(c) Sentiment Intensity Prediction (Sy)
Tasks Pearson Correlation Cosine similarity
T A V [TV T+A AsV|[TeAV| T A  V [T+V T+A A«V | T+A+V
STL Ep 0.249 0.165 0.134 | 0.260 0.219 0.228 0.298 0.436  0.334 0.281 | 0.437 0.422 0.405 0.464
MTL | Ec, Er || 0.259 0.180 0.154 | 0.269 0.277 0.235 0.323 0.439 0.367 0.301 | 0.448 0.462 0.419 0.478
Tasks MSE MAE
T A v | T+V  T+A A+V | T+A+V T A \Y% T+V  T+A A+V | T+A+V
STL Er 0.136  0.128 0.126 | 0.108 0.117 0.112 0.104 0.163 0.167 0.164 | 0.159 0.165 0.161 0.162
MTL | Ec, Er || 0.119 0.120 0.118 | 0.098 0.114 0.105 0.094 0.175 0.170 0.171 | 0.166 0.173 0.162 0.169

(d) Emotion Intensity Prediction (Ey)

weighted accuracy for emotion classification in the single-task framework. In comparison, similar
to the sentiment classification, when the emotion classification task is learned and evaluated in the
multi-task frameworks along with the sentiment classification (i.e., Sc, Ec) and the emotion inten-
sity prediction (i.e., Ec, Er), we observe a performance increase in both the F1-score and weighted-
accuracy of the emotion classification task. We obtain an improvement of 1% in F1-score and 2%
in weighted-accuracy for the (S¢, Ec) multi-task framework, whereas for the (Ec, Er) framework,
we observe improvements of 1.5% and 2.5% in F1-score and weighted-accuracy, respectively.
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For sentiment and emotion intensity prediction tasks, we report Pearson correlation score, co-
sine similarity, mean-squared-error and mean-absolute-error as the performance metrics in Ta-
ble 3(c) and 3(d). Similar to the sentiment classification (c.f. Table 3(a)) and emotion classification
(c.f. Table 3(b)) tasks, we observe the performance improvement for sentiment intensity and emo-
tion intensity tasks in multi-task learning framework as well. Both the Pearson score (0.568, 0.323)
and cosine similarity (0.576, 0.478) for the MTL frameworks (i.e., (Sc, Sy), (Ec, E;)) are better than
their respective single-task frameworks. Similarly, MSE and MAE for the sentiment intensity pre-
diction are lower in comparison to the single-task framework. For emotion intensity prediction,
our proposed MTL framework (Ec, Er) yields lower MSE than the single-task framework; however,
the system reports lower MAE for STL.

Further, for most of the above scenarios, the performance of a tri-modal input combination is bet-
ter than the performance of bi-modal inputs, which are, in turn, better than the performance of uni-
modal inputs. Thus, it signifies that the effective combination of multi-modal inputs, obtained by
the contextual inter-modal attention mechanism, has a significant effect on the performance of the
underlying system. Also, these results suggest that the MTL framework successfully leverages the
inter-dependence of multiple tasks in improving the overall performance. In Figure 3, we present
a graphical comparison among the STL and MTL frameworks for different input combinations.

To verify the efficacy of our proposed model, we also experiment with another multi-modal
dataset, i.e., CMU-MOSI [58]. The CMU-MOSI dataset has approximately 2,199 utterances, and
each utterance has an associated sentiment score. We follow our (S¢, S;) MTL framework (c.f. Sec-
tion 4.3) for the prediction of sentiment class and intensity values in the MOSI dataset. In Table 4,
we depict the evaluation results for tri-modal input. The STL framework for the sentiment clas-
sification task obtains an F1-score of 76.67% and an accuracy value of 76.74%. In comparison, the
proposed model yields an improved F1-score (78.24%) and accuracy value (78.42%) for the senti-
ment classification task in the MTL framework. Similarly, we observe better performance when
the sentiment intensity prediction task is learned alongside sentiment classification in the MTL
framework. The performance of the MTL framework in MOSI dataset (as well as in MOSEI dataset)
further supports our claim that the inter-relatedness among the participating tasks indeed assist
each other for performance improvement.

4.5 Qualitative Analysis of the Single-task and Multi-task Learning Frameworks

As discussed in Section 1, MTL framework aims to leverage the inter-relatedness of multiple tasks
for individual performance improvement. Through experiments, we establish the efficacy of MTL
framework for the four tasks (c.f. Table 3 and Figure 3). We further analyze the outputs of our
proposed STL and MTL frameworks from the qualitative perspective. In Table 5, we present few
example scenarios, where the tasks in our proposed MTL framework exploit the information of
other tasks for the correct classification (or better intensity score prediction). In comparison, the
single-task framework finds it non-trivial for correct prediction of the same instances. For the
four tasks at hand, we compare the predictions of all three multi-task setups (c.f. Section 4.3) with
the single-task framework. For the first example (i.e., u;) in Table 5, the actual sentiment is neg-
ative with the intensity -2.67, whereas the emotions are anger and disgust with intensities 0.66
and 1.0, respectively. In the STL framework, the sentiment classification model (S¢) misclassifies
the sentiment as positive, while the sentiment intensity prediction obtains the score of —0.11 (an
error of 2.56 points). In comparison, the sentiment classification and intensity prediction (S¢, Sr)
MTL framework correctly predicts the sentiment polarity to positive, and also improves the in-
tensity prediction by 1.25 points at —1.35. Thus, we can argue that the MTL framework, indeed,
learns better than the STL framework, as these two tasks assist each other for the performance
improvement in the MTL setup.
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Fig. 3. Comparative study of STL and MTL frameworks. Accuracy, Weighted-Accuracy, F1-score, Pearson,

Cosine: Higher the better; MSE, MAE: Lower the better.

Similarly, the single task emotion classification model obtains one correct (i.e., disgust) and

two incorrect predictions (i.e., happy and sad). Furthermore, it also fails to identify the

anger

emotion. Comparatively, both the MTL setups involving emotion classification, i.e., (Ec, Ey) and
(Sc, Ec), yield improved performance (i.e., precision = 0.66 & recall = 1.0 for MTL (E¢, E;) and
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Table 4. MOSI: STL and MTL Frameworks for the Proposed Approach on
the Tri-modal Inputs (T+A+V)

Tasks || Sentiment Class Sentiment Intensity
F1-score Acc MAE MSE Pearson Cosine
STL 76.67 76.74 || 0.874 1.236 0.716 0.727
MTL 78.24 78.42 | 0.867 1.218 0.719 0.731

precision = 0.5 & recall = 1.0 for MTL (Sc, Ec)) than the single-task emotion classification sys-
tem (precision = 0.33 & recall = 0.5). Similarly, for the emotion intensity prediction, the MTL
setup (Ec, Er) obtains better score for the two actual emotion classes anger and disgust. Further,
we observe that the two tasks in MTL (Ec, Ey) are in synchronization most of the time, i.e., for
all the predicted emotion classes (e.g., anger, disgust and happy for u,), the system yields better
intensity scores for all the predicted classes against the non-predicted classes (e.g., fear, sad and
surprise). It can also be observed in other utterances, where the MTL (Ec, E;) setup clearly differ-
entiates between the predicted and non-predicted emotion classes in intensity prediction as well
(e.g., in utterance uy, it yields intensity score of 0.93 for the predicted happy emotion and ~0 in-
tensity scores for the other emotion classes). These observations suggest that the correct emotion
classification has a direct effect on the improved intensity prediction.

For the sentiment and emotion classification (S¢, Ec) MTL setup, the knowledge of sentiment
helps in identifying the correct emotion label in MTL framework. For example, in utterance us, the
presence of negative sentiment drives the system to ignore the happy emotion for the final predic-
tion, which was predicted by both STL and emotion classification and emotion intensity prediction
(Ec, Er) MTL frameworks in the absence of information regarding the negative sentiment. It sug-
gests that our MTL framework identifies the relationship between sentiment and emotion, and
leverages the predicted sentiment for the correct classification of emotion. Once again, we argue
that this is an example of inter-dependence between two related tasks and our MTL framework
successfully exploits it for the correct prediction.

4.6 Comparative Analysis

In Table 6, we report the comparative results for all four tasks, i.e., sentiment classification (S¢),
sentiment intensity prediction (Sy), emotion classification (Ec), and emotion intensity prediction
(Er). In particular, we compare our proposed single-task and multi-task approaches with the fol-
lowing existing systems:

A. Sheikh et al. [44] proposed a deep canonical correlation analyzer to focus on improving
the representations of the input modalities (i.e., text and acoustic). These improved repre-
sentations are fed to the softmax classifier for the sentiment classification.

B. Blanchard et al. [6] proposed a multi-modal fusion technique that accounts for visual and
acoustics input modalities. At first, they extracted mid-level acoustic and visual features
from trained bag-of-words (BoW) models and subsequently learned the confidence scores
using a separate classifier (SVM) for each modality. Finally, they employed two fusion tech-
niques, i.e., score-level fusion and output-level fusion, for the final prediction.

C. Zadeh et al. [55] proposed a MFN that explicitly accounts for both view-specific interac-
tions and cross-view interactions. Authors employed LSTM for the view-specific interac-
tion, whereas for the cross-view interaction, an attention mechanism had been proposed.

D. Nojavanasghari et al. [27] employed a deep feed-forward neural network (DNN) for com-
bining the three input modalities. Initially, they computed a confidence score for each input
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Table 5. Qualitative Analysis of the STL and MTL Frameworks
Sentiment Emotion
Int it
Utterances Class | Intensity || Class nensity
An | Dg | Fr [ Ha | sd | sr
) Actual Neg -2.67 An, Dg 0.66 | 1.00 0 0 0 0
richard gere and. STL Pos —011 || Dg, Hp, Sd 026 | 015] o | 039 015] 003
susan umm you i
uy | really didn’t enjoy MTL (Ec, Ey) - - An, Dg, Hp 0.39 | 0.32) 0.03| 0.53 | 0.26 | 0.12
tﬁis movie{ at all it MTL (Sc, Si) Neg —1.35 - -
kinda boring for
MTL (Sc, Ec) || Neg - An, Dg, Hp, 5d -
Actual Pos 0.66 Hp 0 0 0 [133] 0 0
laughter and STL Neg —0.16 Hp, Sr 0.10 | 0.03 | 0.03| 0.79 | 0.11 | 0.23
uy | applause still there MTL (Ec, Er) - - Hp 0.07 | 0.06 | 0.03| 0.93 | 0.07 | 0.04
though.. MTL (S¢, S7) || Pos 0.23 - -
MTL (Sc, Ec) Pos - Hp -
Actual Neg | -2.66 | An, Dg Sd 133]033] o | o [100| 0
is in love with some STL Pos —-0.49 Dg, Hp, Sd 0.12 | 0.10 0 0.15 | 0.10 0
us | other person so you MTL (Ec, Er) - - An, Dg, Hp,Sd | 0.61| 0.32 | 0.04 | 0.20 | 0.30 | 0.03
know the story MTL (Sc, 1) Neg —0.85 _ _
MTL (Sc, Ec) Neg - AIl, Dg, Sd -
Actual Neg -1.00 || Dg, Sd, Sr 0 033 o | o |033]|033
i can say STL Pos —0.06 An, Hp, Sd 0.07 | 0.01 0 0.23 | 0.09 | 0.01
unfortunately i don’t
- - Hj . . . . . .
wg | geneey et | ML (Ec, Er) Dg, Hp, Sd 013 | 029 | 0.05| 028 | 0.31| 0.07
program MTL (Sc. 1) || Neg -036 || - -
MTL (Sc, Ec) || Neg - An, Dg, Hp, Sd -
Actual Neg | -1.33 | An,Dg Sd 033|033 0 | 0 |100] o
the last
pas STL Pos 034 | An, Hp 0.04 | 0.01 035 | 0.01 | 001
administration
us | bought into just as MTL (Ec, Ey) - - An, Dg, Sd 0.18 | 0.28 0.09|013| o0
much as this one does | L (Se S1) Neg —0.52 - -
unfortunately
MTL (Sc, Ec) || Neg - An, Dg, Hp, Sd -
Actual Neg | -0.33 || An, Dg Hp 100 033] 0 [033] o | o
it’s just too great of a STL Pos 0.03 An, Hp 0.24 | 0.05 | 0.04| 0.27 | 0.12 | 0.03
ug | risk and it is socially | MTL (Ec, Ey) - - An,Dg,Hp, Sd | 0.32| 0.10 | 0.07 | 0.28 | 0.12 | 0.05
unacceptable MTL (Sc, S1) Neg —0.21 _ _
MTL (Sc, Ec) Neg - An, Dg, Hp -
had a robot here at Actual Pos 0.33 Hp 0 0 0 1033( 0 0
hopkins since the STL Pos 0.81 Hp, Sd 0.02 | 0.01 0.17 | 0.03 | 0.01
year longer than B} N
Y| ‘most institutions in MTL (Ec, Er) Hp 0 0 0 1020 006| 0
this country and MTL (Sc, Sr) Pos 0.72 - -
around the world MTL (Sc, Ec) Pos - Hp R

Few error cases where multi-task learning framework performs better than the single-task framework. An: Anger, Dg:
Disgust, Fr: Fear, Hp: Happy, Sd: Sad and Sr: Surprise. The red colored text shows error in classification, while the blue
colored text reflects predicted intensity values.
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Table 6. Comparative Results: Proposed Multi-task Framework Attains Better Performance as Compared
to the State-of-the-Art (SOTA) Systems in Both the Tasks i.e., Emotion Recognition (Average) and
Sentiment Analysis

Exsisting Systems Proposed
A [44] B [6] C[55]* D[27]* E[39]* F[54]* G [58]* H[57]* 1[56] J[50] K[5] L[34] M[35]|| STL MTL
F1 - - - - - - - - - - - - - 942 95.5

Pos
Acc - - - - - - - - - - - - - 90.6 91.6
F1 - - - - - - - - - - - - - 61.0 62.1

Sc | Neg
Acc - - - - - - - - - - - - - 69.0 69.4
F1 633 632 760 - 76.4 - - - 770  65.6 - 76.1 75.8 77.6 78.8

Av,
& Acc 634 60.0 76.0 - 76.4 - - - 76.9 74.0 - 77.6 76.1 79.8 80.5
PEAR - - - - - - - - - - - - - 0.30 0.28

Pos
MAE - - - - - - - - - - - - - 0.59 0.62
PEAR - - — - - — - - - - - - - 0.80 0.84

Sr | Neg
MAE - - - - - - - - - - - - - 0.79 0.76
PEAR - 0.30 - - - - - - 0.54 - - - 21.8 0.55 0.56

Avg
MAE g 0.91 — - B = - - 0.71 - - - 1.46 |[[0.69 0.69
F1 - - - 71.4 - - - - 72.8 - - - 72.1 75.6 75.9

An
W-Acc - - - - 56.0 60.5 - - 62.6 - - - 49.8 64.5 66.8
F1 - - 71.4 - - - - - 76.6 - - - 73.2 81.0 81.9

D
& W-Acc - - 65.2 67.0 - - - - 69.1 - - - 499 722 72.7
F1 - - 89.9 - - - - - 89.9 - - - 94.2 87.7 87.9

Fr
W-Acc - - - - - - 60.0 - 62.0 - - - 49.9 515 62.2
F1 - - - - - 66.6 - 71.0 66.3 - - - 23.7 59.3 67.0

Ec| Hp
W-Acc - - - - - 66.5 - - 66.3 - - - 373 61.6 53.6
F1 - - 60.8 - - - - - 66.9 - - - 51.6 673 72.4

Sd
W-Acc - - - - - 58.9 - - 60.4 - - - 49.8 654 61.4
F1 g - 85.4 - - — - - 85.5 » - - 83.0 |/ 86.5 86.0

Sr
W-Acc - - 53.3 - - 52.2 - - 53.7 - - - 49.8 53.0 60.6
F1 - - - - - - - - 76.3 - - - 66.3 76.2 78.6

Avg
W-Acc - - - - - - - - 62.3 - 57.6 - 47.7 61.3 62.8
PEAR - - - - - - - - - 0.08 - =013 —0.004 || 0.34 0.40

An
MAE - - - - - - - - - 0.10 - 0.18 1.35 0.17 0.18
PEAR - - - - - - - - - 0.06 - =010 0.004 {039 0.41

D
& MAE - - - - - - - - - 0.05 - 0.13 1.39 0.12 0.14
PEAR - - - - - - - - - 0.01 - -0.03 —0.002 [| 0.07 0.10

Fr
MAE - - - - - - - - - 0.05 - 0.06 1.46 |[[0.05 0.06
PEAR - - - - - - - - - 0.55 - 0.58 0.02 0.58 0.60

Er | Hp
MAE - - - - - - - - - 0.40 - 0.38 1.10 0.36 0.37
PEAR - - - - - - - - - =006 - —0.16 —0.013]]0.28 0.29

Sd
MAE - - - - - - - - - 0.11 - 0.17 1.36 0.18 0.19
PEAR - - - - - - - - - =003 - -0.007 =0.013 (| 0.10 0.13

Sr
MAE - - - - - - - - - 0.03 - 0.06 1.46 0.05 0.07
PEAR - - - - - - - - - - - 0.27 0.02 0.29 0.32

Avg
MAE - - - - - - - - - 0.12 0.87 0.19 1.35 0.16 0.16

*Values are taken from system I [56]. Columns (A-M) are the existing systems defined in Section 4.6.
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modality using another DNN. These confidence scores (C;), along with their complement
scores (1 — C;), act as inputs to the fusion network for the prediction.

E. Rajagopalan et al. [39] proposed a Multi-View LSTM (MV-LSTM) to model the view-
specific and cross-view interactions over time.

F. Zadeh et al. [54] introduced a multi-modal TFN framework to learn both intra and inter-
dynamics of the input modalities (i.e., text, acoustic, and visual).

G. Zadeh et al. [58] proposed a dictionary-based approach for multi-modal sentiment analy-
sis. The multi-modal dictionary was compiled utilizing the verbal and gesture features for
each word in the dataset.

H. Zadeh et al. [57] introduced a multi-attention block (MAB) based framework for sentiment
classification to capture the inter-modality information across modalities.

I. Zadeh et al. [56] proposed a DFG for the fusion of tri-modal inputs. The authors extended
the MFN [55] by incorporating the DFG (called as Graph-MFN) for the fusion.

J. Williams et al. [50] proposed an input-level fusion technique followed by a deep neural
network layer (i.e., CNN, LSTM and GRU) to combine the three modalities for the emotion
intensity prediction.

K. Beard et al. [5] proposed a recursive multi-attention architecture that exploits the shared
external memory for emotion recognition.

L. Poria et al. [34] exploited the contextual dependencies among the utterances in an LSTM
architecture for the sentiment classification.

M. Poria et al. [35] proposed an attention-based recurrent model that incorporates both con-
text learning and dynamic feature fusion for sentiment analysis.

Some of the above existing works reported the performance’ on the MOSEI dataset, while oth-
ers evaluated their systems on different datasets, for which we have executed their models® and
obtained the values. Further, we take the results of some systems, as reported in Zadeh et al. [56]
(System I). For sentiment classification (S¢), the existing state-of-the-art (i.e., System I [56]) re-
ported the Fl-score and accuracy values as 77.0% and 76.9%. In comparison, our proposed MTL
frameworks yield 78.8% F1-score and 80.5% accuracy value with an increment of 1.8 and 3.6 points,
respectively, for the sentiment classification. In the sentiment intensity prediction (Sy) task, our
MTL framework reports 0.56 Pearson score against 0.54 Pearson score of the state-of-the-art sys-
tem. Similarly, we obtain lesser error (0.69 MAE) in comparison to the existing system (0.71 MAE).

For emotion classification (Ec), we report both the overall and class-wise performance of the
system in terms of obtained F1-scores and weighted-accuracies. On average, our MTL framework
reports 79.2% F1-score and 63.5% weighted-accuracy, whereas the best existing system yields 76.3%
and 62.3% F1-score and weighted-accuracy, respectively. Furthermore, our system also performs
better for most of the individual emotion classes (except F1-score for happy and fear). In the emo-
tion intensity prediction (Ej) task, we observe contrasting behavior among two evaluation metrics.
While our proposed MTL framework yields a better Pearson score for all the cases, the existing
system J [50] obtains lesser error in terms of mean-absolute-error. We obtained the overall Pearson
score of 0.32 and MAE of 0.16, while the existing systems obtained the best Pearson score of 0.27
(i.e., System L [34]) and MAE of 0.12 (i.e., System ] [50]).

During analysis, we make an important observation. Small improvements in performance do
not reveal the exact improvement in the number of instances. Since there are more than 4.6K test
samples, even the improvement by one point (in the classification tasks) reflects that the system
improves its predictions for 46 samples.

7Some of these systems do not report their performances for all the four tasks.
8We have experimented with their published codes.
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We also perform a significance test (T-test) to compute the p-values for all four tasks and observe
that the obtained results are significant (p-values > 0.5) for most of the cases (except MAE for the
emotion intensity).

In our current work, we have considered only two tasks at a time in an MTL framework; how-
ever, we would like to emphasize that the MTL framework can be scaled for n number of related-
tasks. For each task, we can add task-specific layers for the prediction on top of the shared repre-
sentation, i.e., the shared representation can be fed to each task-specific branch of the framework
for the respective prediction.

Please note that to provide an unbiased comparison between the proposed MTL and STL frame-
works, we kept the same network configuration for both, except the task-specific layers in the
MTL framework. Therefore, in comparison with any STL framework, the only addition in the
MTL framework is the task-specific layer for n — 1 tasks’ (in our case, the number of tasks n = 2).
We also kept the network hyperparameters (e.g., loss, optimizer, dropout, batch size and epoch)
intact, as mentioned in Table 2.

Let us assume that the whole network is divided into the following two modules, i.e., a base
network B that is common in both MTL and STL frameworks (starting from the input layer to the
concatenations of the CIM representation) and a task-specific network T; for the i*" task. There-
fore, the time complexity to train the complete network for n tasks is

STL = z": O(exa(B+T;)) (1)

) @)

where «() is the function that computes the time required for one forward-backward pass of a
network, and e is the number of epochs. We observe from Equations (1) and (2) that during the
training of MTL framework for n tasks, the base network B has been trained only once; however,
for the STL framework, the base network B needs to be trained n times for each task. Therefore, the
overall complexity of the STL framework for n tasks is higher than the MTL framework. Further,
assuming that the task-specific network T; is small enough (say, just the output layer), we can
achieve an improvement in the overall complexity by an approximate factor of n.

MTL:O(e*

«(B)+ Y ally

4.7 Analysis of Attention Mechanism

In this section, we present our analysis of the proposed contextual inter-modal attention mecha-
nism. For the case study, we select a representative video from the dataset, as depicted in Figure 4.

There are seven utterances in the video, and for each case, we depict three representational
visual-frames along with their textual representations. The person in the video is sharing his expe-
rience, and at times he feels anger/sadness remembering the bitter events. However, in the present,
he seems confident and satisfied with all the things that he learned. In Table 7, we list the predic-
tions for the seven utterances in our three multi-task setups. Further, the heatmaps of the attention
weights (i.e., N; & N; of Algorithm 1) are depicted in Figure 5.

For each multi-task setup, there are three attention weight matrices of 2 X (7 X 7) dimension,
corresponding to the text-visual, acoustic-visual, and text-acoustic pairs. The solid black line, at
the center, defines the boundary of participating modalities, i.e., the left and right sides represent
the textual (N7)*° and visual (N;)!° representations, respectively, for the text-visual attention pair.

9Task-specific layers for one task will also be there in any STL framework.
10probability distribution matrix as computed in the CIM attention framework (c.f. Section 3.1 and Algorithm 1).
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(a)

u1. they have doubt they have fear

they lose in a ferrari race or they lose
in a race and then they just give up

[Neg; Sad]

(d) uy: it's your ability to take a loss
get up the next day dust yourself off and
keep going

[Pos; Happy]

(b) wp: but the hardest thing (C) us: you win youre happy you
in life to learn is to lose easy get a high five your friends are happy
[Pos; Disgust, Happy, Sad] [Pos; Happy]

(€) us: i have lost at everything youcan  (f) ug: i have been beat up and put
imagine seriously [Pos; Happy] down and everything that can go wrong
has gone wrong for me [Neg; Sad]

(9) wuy: but i just kept going
[Pos; No class]

Fig. 4. We take a video from MOSEI dataset which has 7 utterances [u1, u2, us, us, us, ug & uz]. We depict
three representative visual frames for each utterance with their actual sentiments and emotions.

Table 7. Prediction for the Utterances of a Video in Test Set for Various Multi-task Frameworks

Sc Ec Sc Sy E;
Actual || Neg | sd Neg | -0.33 Fe An Dg Fr Hp Sd  Sr
Yol v Neg | An,Dg Hp,Sd Neg | -018 sd 0 0 0 0 033 o0
" Actual || Pos | Dg, Hp, Sd Pos | 0.66 An,Dg Hp, Sd || 0.15 009 006 021 036 0.06
MTL Pos | An, Hp, Sd Pos | 021  Dg Hp,Sd 0 033 0 066 066 0
s Actual || Pos | Hp Pos | 1.32 Hp, 5d 0.09 033 006 042 051 006
MTL Pos | Hp, Sd Pos | 0.33 Hp 0 0 0 166 0 0
s Actual || Pos | Hp Pos | 0.66 Hp 009 003 003 045 012 003
MTL Pos | Hp Pos | 240  Hp 0 0 0 1 0 0
us Actual Pos Hp Pos 0 Hp 0.04 0.09 006 051 021 0.09
MTL Pos Hp Pos 1.80 Hp 0 0 0 1 0 0
e Actual || Neg | Sd Neg | -1.98  Hp, Sd 015 009 006 067 018 015
MTL Neg | An, Hp, Sd Neg | —1.20 Sd 0 0 0 0 1.66 0
Actual || Pos | No class Pos | 0 Hp, Sd 021 012 006 069 078 024
Yl ML || Pos | Hp sd Pos | 045  No class o o o 0o 0o o
(a) Sc, Ec (b) Sc, St Hp 0.15 009 003 063 009 015

In Figure 5, we present the heatmaps of the attention weights for our CIM module. (¢) Ec, Er
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(a) Sentiment and Emotion Classification (Sc¢, Ec).
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(b) Sentiment Classification and Sentiment Intensity Prediction (Sc, St).
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(c) Emotion Classification and Emotion Intensity Prediction (Ec, Ex).

Fig. 5. Pair-wise softmax attention weights N1 and Ny of text-visual, acoustic-visual and text-acoustic for a
video (c.f. Figure 4 and Table 7) in three MTL setups. Solid (black) line at the center represents boundary
of N7 and N2 matrices. The heatmaps represent attention weights of a particular utterance with respect to
other utterances in Ny and Na. Each cell (i, j) of the heatmap signifies the weights of utterance “j” for the
classification of utterance “i” of the pair-wise modality matrices, hence, assists in predicting the labels more
concisely by incorporating contextual inter-modal information. Depending on the set of tasks in the MTL
framework, the CIM module learns different set of attention weights for each case, hence, it suggests that

different set of features contributes differently.

Each matrix depicts the associations of an utterance with all the other utterances in the video, with

« o

each cell (i, j) signifies the degree of association of utterance “j” for the classification of utterance
“” in the pair-wise modality matrices. The darker shade represents the higher association. As an
instance, for the utterance “us” in Figure 5(a), our model ignores the textual features of other utter-
ances, and at the same time, it puts more attention on the visual features of us, us and u; utterances
for the textual-visual attention pair. We observe that the model predicts the sentiment of us cor-
rectly, which we can relate to the textual representation. Similarly, for the emotion classification,

we can argue that the model focuses on the textual features for the emotions sad (correct) and
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anger (incorrect); however, the misclassified class happy was predicted due to the visual represen-
tations of the utterance us, ug or possibly u; as well. Therefore, in light of the above discussion, it
might not be unfair to say that the attention weights assist in predicting the labels more concisely
by incorporating contextual inter-modal information. Furthermore, depending on the set of tasks
in the MTL framework, the CIM module learns a different set of attention weights for each case;
hence, it suggests that different set of features contributes differently towards the prediction of
different outputs.

5 CONCLUSION AND FUTURE DIRECTION

In this article, we have presented a recurrent architecture based MTL framework for the multi-
modal affect analysis. We employed a contextual inter-modal attention mechanism to learn the
degree of association among neighboring utterances and the input modalities (i.e., textual, acous-
tic, and visual). We defined three multi-task setups for the four tasks of sentiment and emotion
analysis, i.e., sentiment and emotion classification, sentiment classification and sentiment intensity
prediction, and emotion classification and emotion intensity prediction. Our proposed multi-task
models learn the inter-relatedness among the participating tasks and leverage them for the over-
all performance improvement. We evaluated our proposed approach on the benchmark dataset of
multi-modal sentiment and emotion analysis, i.e., CMU-MOSEIL Experimental results suggest that,
in all three setups, the MTL framework obtains better performance than that of a STL framework.
Further, we compared our proposed model with various existing systems, and in comparison, we
report state-of-the-art for three tasks, sentiment classification, sentiment intensity prediction and
emotion classification, while for the emotion intensity prediction, we obtained comparable per-
formance (better Pearson correlation, but slightly higher mean-absolute-error).
The significance of our obtained results are followings:

—Our MTL framework has effectively utilized the inter-relatedness among the participating
tasks. Our system leverages the inter-relatedness information of each task, and improves
the performance. The inferior performance of the STL framework verifies that the inter-
relatedness information has a positive effect on the proposed MTL framework.

—The overall complexity to solve multiple tasks is reduced, as only a single system is required
for all the participating tasks. Therefore, the obtained results provide benefits on both fronts
of performance and complexity.

—Our proposed attention mechanism intelligently selects the contributing input modality
based on its significance for the prediction. It enables us not to worry about the presence
of noise in the input as the noise gets filtered in the attention module.

In our experiments for the multi-label emotion classification, we have manually fixed threshold
value for the final prediction, i.e., predicted values higher than the threshold represent the presence
of emotion, while values less than the threshold reflect the absence of respective emotion. There
are two drawbacks of such an approach:

—The threshold has been set manually to maximize the performance.
—The optimized threshold value differs for the different objective functions (i.e., 0.4 for the
F1-score and 0.2 for the Weighted-Accuracy in Emotion classification, c.f. Table 2).

A possible solution to the above limitations could be the application of a multi-objective op-
timization technique to optimize the threshold for various objective functions simultaneously.
Such an approach would also ensure that the threshold is found automatically as a result of the
optimization.
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Our multi-task framework shares the concatenated representation up to the attention layer.
The shared representation receives gradients of errors from all the branches of the multiple tasks
(e.g., sentiment and emotion) and accordingly adjust the weights of the model. Thus, the shared
representations do not pose any bias towards any particular task, and it will assist the model to
achieve generalization for multiple tasks.

Since the shared representation aims to achieve the generalization, not all these attentive rep-
resentations are equally important to both sentiment and emotion. In other words, some of these
representations might be more significant than others for sentiment classification, whereas the
same might be less significant. A potential extension of the current study is to filter the shared-
representation to fulfill the task-specific requirements. In future, we would like to explore both the
dimensions.
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