
Neural Natural Language Processing

Lecture 3: Word and document 
embeddings
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Plan of the lecture

● Part 1: Distributional semantics and vector 
spaces. 

● Part 2: word2vec and doc2vec models.
● Part 3: Other models for word and document 

embeddings.
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Data-driven approach to derivation 
of word meaning

● Ludwig Wittgenstein (1945): “The meaning 
of a word is its use in the language”

● Zellig Harris (1954): “If A and B have almost 
identical environments we say that they are 
synonyms”

● John Firth (1957): “You shall know the word 
by the company it keeps.” 

Source: https://web.stanford.edu/~jurafsky/slp3/
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What does “ong choi” mean?

Suppose you see these sentences:
• Ong choi is delicious sautéed with garlic. 
• Ong choi is superb over rice
• Ong choi leaves with salty sauces

 And you've also seen these:
• …spinach sautéed with garlic over rice
• Chard stems and leaves are delicious
• Collard greens and other salty leafy greens

 Conclusion:
 Ong choi is a leafy green like spinach, chard, or collard 

greens

Source: https://web.stanford.edu/~jurafsky/slp3/
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“Water Spinach”

Source: https://web.stanford.edu/~jurafsky/slp3/
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We’ll build a model of meaning 
focusing on similarity

● Each word = a vector 
– Not just “word” or “word45”.

● Similar words are “nearby in space”

Source: https://web.stanford.edu/~jurafsky/slp3/
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We define a word as a vector

● Called an "embedding" because it's embedded into a 
space

● The standard way to represent meaning in NLP

● Fine-grained model of meaning for similarity 
– NLP tasks like sentiment analysis

● With words,  requires same word to be in training and test
● With embeddings: ok if similar words occurred!!! 

– Question answering, conversational agents, etc

Source: https://web.stanford.edu/~jurafsky/slp3/
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Two kinds of embeddings

● Sparse (e.g. TF-IDF, PPMI) 
– A common baseline model
– Sparse vectors
– Words are represented by a simple function of the counts of 

nearby words

● Dense (e.g. word2vec)
– Dense vectors
– Representation is created by training a classifier to distinguish 

nearby and far-away words

Source: https://web.stanford.edu/~jurafsky/slp3/
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Representation of Documents: The 
Vector Space Model (VSM)

● (a.k.a. term-document matrix in Information Retrieval)
● word vectors: characterizing word with the documents they occur in
● document vectors: characterizing documents with their words 

Source: https://web.stanford.edu/~jurafsky/slp3/
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Reminders from linear algebra

vector length

● -1: vectors point in opposite 
directions 

● +1:  vectors point in same 
directions

● 0: vectors are orthogonal
● If values are non-negative,  

 cosine ranges 0-1
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Cosine as a similarity measure

● Angle is small → cosine has a large value
● Angle is large → cosine has a small value

Source: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
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The result of the vector composition 
King – Man + Woman = ?

Source: 
https://blog.acolyer.org/2016/04/21/the-
amazing-power-of-word-vectors/
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Plan of the lecture

● Part 1: Distributional semantics and vector 
spaces. 

● Part 2: word2vec and doc2vec models.
● Part 3: Other models for word and document 

embeddings.
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word2vec (Mikolov et al., 2013)

● Idea: predict rather than count 

● Instead of counting how often each word w occurs near 
"apricot” train a classifier on a binary prediction task:
– Is w likely to show up near "apricot"?

● We don’t actually care about this task
– But we'll take the learned classifier weights as the word 

embeddings
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Use running text as implicitly 
supervised training data

● A word s near apricot 
– Acts as gold ‘correct answer’ to the question 
– “Is word w likely to show up near apricot?” 

● No need for hand-labeled supervision

● The idea comes from neural language modeling 
– Bengio et al. (2003)
– Collobert et al. (2011) 
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 word2vec

● CBOW: predict word, given its close context. Bag-of-words within context

● Skip-gram: predict context, given a word. Takes order into account.

Source: Mikolov, T., Chen, K., Conrado, G., Dean, J. (2013) Efficient Estimation of Word Representations in 
Vector Space. Proceedings of the Workshop at ICLR, Scottsdale, pp. 1-12.
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Continuous bag-of-word model 
(CBOW)

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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Skip-Gram model

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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CBOW model

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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Skip-gram model

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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Training tricks

● Softmax issue:

● Denominator in softmax is a sum for the whole 
dictionary.

● Softmax calculation is required for all (word, 
context) pairs

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 



22

Hierarchical softmax
Hierarchical softmax uses a binary tree to represent all words in the 
vocabulary. The words themselves are leaves in the tree. For each 
leaf, there exists a unique path from the root to the leaf, and this path 
is used to estimate the probability of the word represented by the leaf. 
“We define this probability as the probability of a random walk starting 
from the root ending at the leaf in question.”

Source: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
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Hierarchical softmax

Source: http://building-babylon.net/2017/08/01/hierarchical-softmax/ 

http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical softmax

Source: http://building-babylon.net/2017/08/01/hierarchical-softmax/ 

http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical softmax

Source: http://building-babylon.net/2017/08/01/hierarchical-softmax/ 

http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Hierarchical softmax

● Idea: represent probability distribution as a tree, where leaves are 
classes (words in our case).

● 𝒑1, ... , 𝒑𝑛- leaves probabilities

● Mark each edge with probability of choosing this edge, moving down 
thе tree.

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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Hierarchical softmax

Source: http://building-babylon.net/2017/08/01/hierarchical-softmax/ 

● Huffman tree: minimizes the expected path 
length from root to leaf

● => minimizing the exp. number of updates

http://building-babylon.net/2017/08/01/hierarchical-softmax/
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Negative sampling

● Another methods to avoid softmax calculation:
● Consider for each word w binary classifier: if given word C 

is good context for w, or not
● For each word, sample negative examples (negative count 

= 2...25)

● Loss function:

Source: Word representations in vector space. Irina Piontkovskaya iPavlov, MIPT 25.10.2018 
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word2vec: Skip-Gram
● word2vec provides a variety of options (SkipGram/CBOW, hierarchical 

softmax/negative sampling, …). We will look more closely at:

–  “skip-gram with negative sampling” (SGNS)

● Skip-gram training:

1) Treat the target word and a neighboring context word as positive examples.

2) Randomly sample other words in the lexicon to get negative samples

3) Use logistic regression to train a classifier to distinguish those two cases

4) Use the weights as the embeddings



30

Skip-Gram Training Data

Training sentence: Asssume context words are those in +/- 
2 word window. 

... lemon, a tablespoon of apricot jam   a   pinch ... 
                           c1              c2   target     c3     c4

Given a tuple (t,c)  = target, context
 (apricot , jam)
 (apricot, aadvark)

Return probability that c is a real context word:
P(+|t,c)
P(−|t,c) = 1−P(+|t,c)
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How to compute p(+|t,c)?

 Intuition:
 Words are likely to appear near similar words
 Model similarity with dot-product!
 Similarity(t,c)   t∝  ∙ c
 Turning dot product into a probability
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Computing probabilities

Turning dot product into a probability:

Assume all context words are independent:
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Training sentence: Asssume context words are those in +/- 
2 word window. 

... lemon, a tablespoon of apricot jam   a   pinch ... 
                           c1              c2   target     c3     c4

Positive and negative samples
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Choosing noise words

 Could pick w according to their unigram frequency P(w)
 More common to chosen then according to pα(w)

 α= ¾ works well because it gives rare noise words slightly 
higher probability

 To show this, imagine two events p(a)=.99 and p(b) = .01:



35

Objective function

 We want to maximize…

 Maximize the + label for the pairs from the positive training 
data, and the – label for the negative samples.
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Embeddings: 
weights to/from projection layer

• Win and Wout
T: V x N matrices

• every word is embedded in N dimensions, which is the size 
of the hidden layer 

• Note: embeddings for words and contexts differ
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Training word2vec model: summary

• Start with V random 300-dimensional vectors as initial 
embeddings

• Use logistic regression, the second most basic classifier 
used in machine learning after naïve bayes
– Take a corpus and take pairs of words that co-occur as 

positive examples
– Take pairs of words that don't co-occur as negative examples
– Train the classifier to distinguish these by slowly adjusting all 

the embeddings to improve the classifier performance
– Throw away the classifier code and keep the embeddings.
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What does the model learns

● The model tries to increase the scalar product of good 
(word, context) pairs and decrease for the bad ones.

● How to increase the scalar product of two vectors?
● increase lengths of one of the vectors: in that case, all 

scalar products of this vector are increasing

– decrease angle between vectors
– word vector tends to have small angle with its context vector
– vectors which are frequently occur in the same context tend 

to be close to each other
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What does the model learns

● The skip-gram model tries to shift embeddings so the target embeddings (here for apricot) 
are closer to (have a higher dot product with) context embeddings for nearby words (here 
jam) and further from (have a lower dot product with) context embeddings for words that 
don’t occur nearby (here aardvark).

Source: https://web.stanford.edu/~jurafsky/slp3/6.pdf
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Vector Algebra 
for Analogy Questions

• Observation: words in the 
same relation have 
similar vector differences

• Syntactic analogy 
questions: 
“a is to b as c is to ...”   
(rough is to rougher as 
tough is to ...)

Source: Mikolov, T., Yih, W., Zweig, G. (2013): Linguistic Regularities in Continuous Space Word Representations. 
Proc. HLT-NAACL '13, pp. 746-751
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How about larger units than a word?

● Larger linguistic units:
– Multi-word expression, noun phrase, ...
– Sentence
– Paragraph
– Document
– … corpus?

● Representing them in a low-dimensional fixed-length format is useful 
for feeding them into a neural network
– Text categorization, sentiment analysis, gender detection, …
– Clustering, analogies, arithmetics, … representing in a single space is useful

Source: . 
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Pooling / averaging of word vectors 

● The straightforward approach of averaging 
each of a text's words' word-vectors creates a 
quick and crude document-vector
– often be useful
– can be improved if weights, like TF-IDF are used 

and stopwords are removed
– many models exist which outperform this baseline

Image source: https://embarc.org/embarc_mli/doc/build/html/MLI_kernels/pooling_avg.html



43

Doc2vec model

Source: https://arxiv.org/pdf/1507.07998.pdf
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Doc2vec: Paragraph Vector - 
Distributed Memory (PV-DM)

● word2Vec CBOW
● Vectors are obtained by training a neural 

network on the task of predicting a center word 
based an average of context word-vectors 
and the document vector.
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Doc2vec: Paragraph Vector - 
Distributed Memory (PV-DM)

● Paragraph vector is concatenated or averaged 
with local context word vectors to predict the 
next word.

● The prediction task changes the word vectors 
and the paragraph vector.

– document matrix

– word matrix (word2vec)
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Getting a vector for an unseen 
document during training

● Step 1: Fix W so that it is not updated
● Step 2: Augument D with the new randomly 

initialized row
● Step 3: Train for several iterations with the new 

row holding the embeddings for the inferred vector

● Note: This will not give exactly the same vector 
for a sentence from a training data!

Source: https://datascience.stackexchange.com/questions/10612/doc2vecgensim-how-can-i-infer-
unseen-sentences-label
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Doc2vec: Paragraph Vector - 
Distributed Bag of Words (PV-DBOW)

● Word2vec SkipGram model
● Vectors are obtained by training a neural 

network on the task of predicting a target word 
just from the full document's doc-vector.
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Doc2vec: Paragraph Vector - 
Distributed Bag of Words (PV-DBOW)

● No local context in the prediction task.
● At inference time, the parameters of the 

classifier and the word vectors are not needed
● backpropagation is used to tune the paragraph 

vectors
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Visualization of Wikipedia paragraph 
vectors using t-SNE

Source: https://arxiv.org/pdf/1507.07998.pdf
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 Nearest neighbors Wikipedia 
articles to “Machine learning” article
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 Wikipedia nearest neighbours to 
“Lady Gaga” (Paragraph Vectors)

Source: https://arxiv.org/pdf/1507.07998.pdf
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 Wikipedia nearest neighbours to 
“Lady Gaga” - “American” + “Japanese” 

Source: https://arxiv.org/pdf/1507.07998.pdf
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Nearest Neighbours to “Distributed 
Representations of Sentences and 

Documents” using Paragraph Vectors

Source: https://arxiv.org/pdf/1507.07998.pdf
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Performance evaluation

● Performances of different methods at the best 
dimensionality on the arXiv article triplets

Source: https://arxiv.org/pdf/1507.07998.pdf
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Plan of the lecture

● Part 1: Distributional semantics and vector 
spaces. 

● Part 2: word2vec and doc2vec models.
● Part 3: Other models for word  document 

embeddings.
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Some other popular dense word 
embedding methods

 word2vec (Mikolov et al., 2013)
https://code.google.com/archive/p/word2vec/

 GloVe (Pennington et al., 2014)
http://nlp.stanford.edu/projects/glove 

 fastText (Bojanowski et. al., 2017)
http://www.fasttext.cc

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove
http://nlp.stanford.edu/projects/glove
http://nlp.stanford.edu/projects/glove
http://www.fasttext.cc/
http://www.fasttext.cc/
http://www.fasttext.cc/
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Tons of other models and 
applications of word embeddings
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Global Vectors (GloVe)

● Objective function:

● Weighting function:

Source: Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)

– matrix of word-word 
co-occurrence counts 

– word vectors

– context vectors
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Global Vectors (GloVe)
● Selling points:

– Fast training
– Scalable to huge corpora
– Good performance even with small corpus, and small vectors

Source: Adopted from Richard Socher, CS224n 2016 course and Pennington, J., Socher, R., & Manning, C. (2014, October). Glove: Global vectors for word 
representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). 
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fastText

● From the developer of word2vec model
– and is based on the SGNS model

● fastText is developed for text classification, but it can also 
be used to learn word embeddings.

– For text classification read: 
https://arxiv.org/pdf/1607.01759.pdf

 
– For word embeddings read: https://www.mitpressjournals.org/

doi/pdfplus/10.1162/tacl_a_00051 
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fastText

● Uses character n-grams and word n-grams:
– morphological information, not only context;
– considering Subword units, and representing words 

by a sum of its character n-grams.

● The original SGNS loss:

Source: https://www.mitpressjournals.org/doi/pdfplus/10.1162/tacl_a_00051

– scoring function: maps pairs of (word, context) to scores in R

– logistic loss
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fastText

● By using a distinct vector representation for each word, 
the SGNS model ignores the internal structure of 
words.

● A different scoring function s which takes into account 
this information!

● Each word w is represented as a bag of character n-
grams.
– Add special boundary symbols < and > at the beginning and 

end of words.
– Include the word w itself in the set of n-grams.

Source: https://www.mitpressjournals.org/doi/pdfplus/10.1162/tacl_a_00051
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fastText

● Word “where” and n = 3:

● Suppose a dictionary of n-grams of size G:
–                            - set of n-grams appearing in w
– Associate a vector     to each n-gram g;
– The scoring function is:

Source: https://www.mitpressjournals.org/doi/pdfplus/10.1162/tacl_a_00051
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Word vs Sense Embeddings
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Word vs Sense Embeddings
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Sense embedding: various methods 
were proposed
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Knowledge-based sense 
inventories: dictionaries, etc.
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AutoExtend: a knowledge-based 
model using WordNet

Source: Rothe, S., & Schuetze, H. (2015). Autoextend: Extending word embeddings 
to embeddings for synsets and lexemes. In EMNLP.
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Multi-Sense Skip-gram: 
Neelakantan et al. (2015) model 

● Step 1: The vector representation of the context is the average 
of its context words’ vectors.

● Step 2: For every word type, maintain clusters of its contexts.
● Step 3: The sense of a word token is predicted as the cluster 

that is closest to its context representation.
● Step 4: After predicting the sense of a word token, perform a 

gradient update on the embedding of that sense.

● Note: Sense discrimination and learning embeddings are 
performed jointly.

Source: https://arxiv.org/pdf/1504.06654.pdf
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Multi-Sense Skip-gram: 
Neelakantan et al. (2015) model 

Source: https://arxiv.org/pdf/1504.06654.pdf
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Non-Parametric Multi-Sense Skip-
gram: Neelakantan et al. (2015)  

● Create a new cluster (sense) for a word type with probability 
proportional to the distance of its context to the nearest 
cluster (sense).

● The number of senses for a word is unknown and is learned 
during training.

● New context cluster and a sense vector are created online 
during training
– when the word is observed with a context were the similarity 

between the vector representation of the context with every 
existing cluster center of the word is less than λ

– λ is a hyperparameter

Source: https://arxiv.org/pdf/1504.06654.pdf
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Non-Parametric Multi-Sense Skip-
gram: Neelakantan et al. (2015)  

● Nearest Neighbors of the word plant for 
different models:

Source: https://arxiv.org/pdf/1504.06654.pdf
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Nearest neighbors of each sense of 
each word by cosine similarity

Source: https://arxiv.org/pdf/1504.06654.pdf
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SenseGram: from pre-trained word 
embeddings to sense embeddings

● Graph clustering
– Chinese Whispers
– (Biemann, 2006)
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SenseGram: from pre-trained word 
embeddings to sense embeddings

● Sense embeddings using retrofitting:
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SenseGram: from pre-trained word 
embeddings to sense embeddings

● Sense embeddings using retrofitting:
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SenseGram: from pre-trained word 
embeddings to sense embeddings

● Neighbors of word and sense vectors:
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Word and sense embeddings of 
words iron and vitamin
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SenseGram: word sense 
disambiguation

● Step 1: Context extraction – use context words 
around the target word

● Step 2: Context filtering – based on context 
word's relevance for disambiguation

● Step 3: Sense choice in context – maximise 
similarity between a context vector and a sense 
vector
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SenseGram: word sense 
disambiguation
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Application of sense representations: 
humor detection and generation?
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Affine transformation of word 
embedding spaces

● Input: word vector (embedding)
● Output: word vector

– In the same space (different transformation yield 
different properties. e.g. semantic and 
morphological relations)

– In a different space, e.g. in a different language → 
machine translation 

● Reflection

● Rotation

● Scaling

● Translation
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Cross-lingual embeddings

●         – word embedding in the source language
●         – word embedding in the target language
● Learn a linear transform for some subset of 

word embeddings (Procrustes problem):
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Cross-lingual embeddings

● Making it better (orthogonal Procrustean 
problem):

● Solution via SVD: 
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RU-UK cross-lingual mapping 
example 
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Affine transformation for prediction of 
hypernymy relations (Fu et al., 2014)

● Hypernyms: cat → animal, dog → animal, 
banana → fruit, apple → fruit, …

● Learn a linear projection from more specific 
word (hyponym) to more generic word 
(hypernym) using:

● P – is a set of training hyponym-hypernym pairs
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Hyperbolic (Poincaré) embeddings

Source: https://arxiv.org/pdf/1705.08039.pdf
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Hyperbolic (Poincaré) embeddings

● Poincaré ball:
● Distance on a ball between two points:

● Loss:

– set of negative examples for u:
– 10 negative samples per 1 positive

Source: https://arxiv.org/pdf/1705.08039.pdf
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Trained on WordNet relations

● Two-dimensional Poincaré embeddings of transitive 
closure of the WordNet mammals subtree.
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Hyperbolic (Poincaré) embeddings: 
Hearst patterns
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Hyperbolic (Poincaré) embeddings
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