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Why word representation?

Definition : Word (Oxford Dictionary)

 A word is a single distinct meaningful element of speech or writing, used with 
others (or sometimes alone) to form a sentence

- Words are stitched together to form a sentence
- Proper representation of words is essential for text representation



Non-semantic word representation

The vast majority of rule-based and statistical NLP work regards words as 
atomic symbols

One-hot vector representation of words:

- Assign a unique id to each unique word in the corpus
- Convert these unique ids to one-hot vectors

Sentence: RMS Titanic was a British passenger liner.

Unique Ids: [1, 2, 3, 4, 5, 6, 7]

One-hot representation: [[1,0,0,0,0,0,0], [0,1,0,0,0,0,0], [0,0,1,0,0,0,0], [0,0,0,1,0,0,0], [0,0,0,0,1,0,0], 
[0,0,0,0,0,1,0], [0,0,0,0,0,0,1]]

https://en.wikipedia.org/wiki/Superliner_(passenger_ship)


Non-semantic word representation 
(continued...)

Python Code for categorical (one-hot) representation

from keras.utils import to_categorical

txt = "RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean in 1912 after 

striking an iceberg during her maiden voyage from Southampton to New York City"

txt_list = txt.split()

word2id = {}

for i,j in enumerate(list(set(txt_list))):

  word2id[j] = i

txt_index = [word2id[i] for i in txt_list]

txt_one_hot = to_categorical(txt_index)

https://colab.research.google.com/drive/1EfnpvIGZp5SOHZCw4D3uDj-Z7hJ97KfJ#scrollTo=ir6D_R9x_TpY


Non-semantic word representation 
(continued...)

Drawbacks of categorical representation:

- No semantics captured
- All the words are equally different from each other

- The euclidean distance between any two words is 1.41 units
- The cosine similarity between any two words is 0

- Curse of dimensionality (the length of the vector depends on the number of words in the 
corpus)

- The vectors formed are sparse



Semantic word representation

We can get a lot of value by representing a word by means of its neighbors:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

Built in Belfast, Ireland, in the United Kingdom the RMS Titanic was the second of the three 
Olympic-class ocean liners.

According to distributional hypothesis, all these words play a role in representing the meaning of 
the word Titanic



Semantic word representation (continued…)

Using co-occurrence matrix to make neighbours represent words.

● Window based co-occurrence matrix captures syntactic (POS) and semantic information
● The matrix is symmetric, i.e. an occurrence is counted irrespective of left or right context
● Example corpus: 

○ I like deep learning. 
○ I like NLP. 
○ I enjoy flying. 



Semantic word representation (continued…)

Co-occurrence matrix example -

● Window size = 1



Semantic word representation (continued…)

Co-occurrence matrix example -

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhS
eVV

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV
https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV


Semantic word representation (continued…)
Code for co-occurence matrix creation:

import pandas as pd

import numpy as np

from collections import defaultdict

def co_occurrence(sentences, window_size):

    d = defaultdict(int)

    vocab = set()

    for text in sentences:

        text = text.lower().split()

        # iterate over sentences

        for i in range(len(text)):

            token = text[i]

            vocab.add(token)  # add to vocab

            next_token = text[i+1 : i+1+window_size]

            

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV#scrollTo=cP1aY-QHpRh5


Semantic word representation (continued…)
Code for co-occurence matrix creation:

for t in next_token:

                key = tuple( sorted([t, token]) )

                d[key] += 1 

    # formulate the dictionary into dataframe

    vocab = sorted(vocab) # sort vocab

    df = pd.DataFrame(data=np.zeros((len(vocab), len(vocab)), dtype=np.int16),

                      index=vocab,

                      columns=vocab)

    for key, value in d.items():

        df.at[key[0], key[1]] = value

        df.at[key[1], key[0]] = value

    return df

docs = ["I like deep learning", "I enjoy NLP", "I enjoy flying"]

co_occurrence(docs, window_size=1)

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV#scrollTo=cP1aY-QHpRh5


Semantic word representation (continued…)

Problems with simple co-occurrence vectors:
- Increase in size with vocabulary
- Sparsity issue persists
- Very high dimensional: require a lot of storage



Semantic word representation (continued…)

Language Modeling:
Language Modeling (LM), is the development of probabilistic models that are able to predict the next 
word in the sequence given the words that precede it.

● A language model learns the probability of word occurrence based on examples of text
● Simpler models may look at a context of a short sequence of words, whereas larger models 

may work at the level of sentences or paragraphs
● Most commonly, language models operate at the level of words

Mathematically:
P(x1,x2,x3,...,xn) = P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,x2,...,xn-1)
P(“its water is so transparent”) = P(“its”)P(“water”|”its”)P(“is”|”its”,”water”)... P(“transparent”|”its”, 
“water”, “is”, “so”)
P(“transparent”|”its water is so”) = count(transparent) / count(its water is so)



Semantic word representation (continued…)

Neural Language Modeling:
Feed Forward Neural Network Language Model (FFNNLM):



Semantic word representation (continued…)

Neural Language Modeling:
● Previous n-1 words are projected by shared projection matrix C∈ R|V|Xm , where |V| is the size 

of the vocabulary and m is the size of the feature

● The input x of the FFNN is a concatenation of feature vectors of n−1 words

● Model is followed by Softmax output layer to guarantee all the conditional probabilities of words 

positive and summing to one

● The final Softmax layer predicts the nth word (next word given the previous context)



Semantic word representation (continued…)

Skip-gram Model:
This is one of the methods used  for the creation of Word2Vec word embeddings

Main ideas behind this method
- Instead of capturing co-occurrence counts directly, predict surrounding words for every word
- Predict surrounding words in a window of length m for every word
- Objective function: Maximize the log probability of any context word given the current center 

word:



Semantic word representation (continued…)

Skip-gram Model:



Semantic word representation (continued…)

Skip-gram Model:



Semantic word representation

Continuous Bag of Words Model:
This is another method for creation of Word2Vec word embeddings

Main ideas behind this method
- Predict the current word based on other words in the context window m
- Objective function: Maximize the log probability of the current word given the context words



Semantic word representation (continued…)



Semantic word representation (continued…)
Code for word embedding creation:

from gensim.models import Word2Vec

sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'],

      ['this', 'is', 'the', 'second', 'sentence'],

      ['yet', 'another', 'sentence'],

      ['one', 'more', 'sentence'],

      ['and', 'the', 'final', 'sentence']]

# train model

model = Word2Vec(sentences, min_count=1, size=300, sg=0) #sg ({0, 1}, optional) – Training algorithm: 1 

for skip-gram; otherwise CBOW.

print(model)

# summarize vocabulary

words = list(model.wv.vocab)

print(words)

# access vector for one word

print(model['sentence'])

https://colab.research.google.com/drive/1fBp7mQZzgQvjinmu4QmpIASX9B5WtgRA#scrollTo=NOQPLWMOemin


Semantic word representation (continued…)
Code for word embedding creation:

model['this'].size

# save model

model.save('model.bin')

# load model

new_model = Word2Vec.load('model.bin')

print(new_model)

https://colab.research.google.com/drive/1fBp7mQZzgQvjinmu4QmpIASX9B5WtgRA#scrollTo=-3_44e0beduM


Semantic word representation (continued…)
Word2Vec demo:

from gensim.test.utils import common_texts, get_tmpfile

from gensim.models import Word2Vec

from gensim.models import KeyedVectors

import numpy as np

def cos(x1, x2):

  return np.dot(x1, x2)/(np.linalg.norm(x1)*np.linalg.norm(x2))

!wget -P /root/input/ -c 

"https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz"

EMBEDDING_FILE = '/root/input/GoogleNews-vectors-negative300.bin.gz' # from above

word2vec = KeyedVectors.load_word2vec_format(EMBEDDING_FILE, binary=True)

print(word2vec["cat"].shape)

print(cos(word2vec['cat'],word2vec['purr']))

print(word2vec.similar_by_vector(word2vec["cat"], topn=10, restrict_vocab=None))

https://colab.research.google.com/drive/1mD5kkHLP5BhYH5HYBxxXuBiijBtA3CcM#scrollTo=ZfLdsQZ4OyAO


Semantic word representation (continued…)
Word2Vec demo:

Plotting word vectors:
import random

vocab = random.sample(list(word2vec.vocab), 50)

X = np.array([word2vec[v] for v in vocab])

import matplotlib.pyplot as plt

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=0)

np.set_printoptions(suppress=True)

Y = tsne.fit_transform(X)

plt.scatter(Y[:, 0], Y[:, 1])

for label, x, y in zip(vocab, Y[:, 0], Y[:, 1]):

    plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')

plt.show()

https://colab.research.google.com/drive/1mD5kkHLP5BhYH5HYBxxXuBiijBtA3CcM#scrollTo=ZfLdsQZ4OyAO


Cross-lingual word embeddings

Why do we need Cross-lingual Embeddings?
- Bridge the language divergence

Applications
- Leverage the resource-richness of one language (e.g., English) in solving a problem in 

resource-constrained languages (e.g., Hindi, Marathi etc.)
- Useful for unsupervised machine translation



Cross-lingual word embeddings (continued...)
Problems with monolingual word embeddings

- Embedding of a word in one language (say, Spanish) and embedding of the same word (translated) in 
other language (say, English) do not possess any association between them.

- Therefore, they cannot represent each other in the vector space (i.e., they cannot correlate).

Monolingual embeddings (Spanish and English) Cross-lingual  embedding (Spanish and English)



Cross-lingual word embeddings (continued...)

Luong et al. 2015, Bilingual Word Representations with Monolingual Quality in Mind. In NAACL Workshop 
on Vector Space Modeling for NLP.

Bi-lingual word embeddings aims to bridge the language divergence in the vector space.
- Idea is pretty simple

- Utilize existing word2vec skip-gram model (Mikolov., 2013a) 
- For each word, define its context to include words from both the source and target 

languages
- Requires a parallel corpus and alignment information among parallel sentences



Cross-lingual word embeddings (continued...)

Source: WS1 WS2 WS3 WS4 WS5 WS6

Alignment 

Target: WT1 WT2 WT3 WT4 WT5 WT6 WT7

Word2Vector

WT2 WT3 WT5 WT6

WS3

Target side context

WS1 WS2  WS4 WS5

Source side context

WS3

Source

Target

Source-BWE 
model

Target-BWE 
model

Bilingual WE

Bi-lingual word embeddings

Alignment Info



Cross-lingual word embeddings (continued...)
Tomas Mikolov, Quoc V. Le, and Ilya Sutskever, 2013. Exploiting Similarities among Languages for 
Machine Translation. In arXiv:1309.4168v1.

● Requires 

○ Two monolingual embeddings

○ Bi-lingual dictionary

● Approach
○ Suppose we are given a set of word pairs and their associated vector representations {xi , zi}. 
○ Goal is to find a transformation matrix W

○ For any given new word and its vector representation x, we can compute z = Wx.



Cross-lingual word embeddings (continued...)

cat बल्ली

Linear layer (W) for transforming English words to Hindi



Cross-lingual word embeddings (continued...)

Normalized word embedding and orthogonal transform for bilingual word translation (Xing et al. 
2015):

- In, Exploiting Similarities among Languages for Machine Translation (Mikolov et at. 2013)
- Given a set of n word pairs and their vector representations {xi, yi}, where xi   is a d1  

dimensional vector and yi  is a d2 dimensional vector
- Goal is to find W (dimension: d2❌ d1) such that Wxi approximates yi      minW ||WX-Y||
- These results can be improved by enforcing an orthogonality constraint on W         

WWT = I



Cross-lingual word embeddings (continued...)
Why is Orthogonality important

- It restricts transformation to only rotation
- Orthogonal transformation is length and angle preserving.
- Therefore it is an isometry of the Euclidean space (such as a rotation).



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)



Cross-lingual word embeddings (continued...)
Word translation without parallel data (Conneau et al. 2018)

Proposed complete unsupervised approach to cross-lingual mapping:
Basic steps:
● Learn W from domain adversarial training
● Use W to induce initial bilingual dictionary X, Y = {xi, yi} 

n
i=1 using CSLS 

(Cross-domain Similarity Local Scaling) metric
● Iteratively update, applying

○ W = UVT  where UΣVT = SVD( YXT )
■ Also done using the following formula for weight updates:

○ And finding new X, Y = {xi, zi}
n

i=1 using CSLS metric
○ Continue till there are no new addition to the dictionary



Cross-lingual word embeddings (continued...)
Cross-domain Similarity Local Scaling (CSLS):

The following is the formula for CSLS:

- Here Wx  is the transformation of source embedding (x) into the target space.

- Here NT(Wxs) is used to denote the neighborhood, associated with a mapped source word 
embedding Wxs

This process increases the similarity associated with isolated word vectors, but 
decreases the similarity of vectors lying in dense areas



Cross-lingual word embeddings (continued...)
Adversarial Training:

- Let X = {x1, x2, x3 …, xn} and Y= {y1, y2, y3, …, ym} be two sets of n and m word 
embeddings coming from a source and a target language respectively.

- A model is trained to discriminate between elements randomly sampled from WX = {Wx1, 
Wx2, ..., Wxn} and Y

Mapping/Generator DiscriminatorSample from X 
xi Wxi

Sample from Y 

 yi

Probability  of 
Source/Target



Cross-lingual word embeddings (continued...)
Codes:

import io

import numpy as np

def load_vec(emb_path, nmax=50000):

    vectors = []

    word2id = {}

    with io.open(emb_path, 'r', encoding='utf-8', newline='\n', errors='ignore') as f:

        next(f)

        for i, line in enumerate(f):

            word, vect = line.rstrip().split(' ', 1)

            vect = np.fromstring(vect, sep=' ')

            assert word not in word2id, 'word found twice'

            vectors.append(vect)

            word2id[word] = len(word2id)

            if len(word2id) == nmax:

                break

    id2word = {v: k for k, v in word2id.items()}

    

https://colab.research.google.com/drive/1VIvxzmdZPyLojWZKuBxKgj2iBASK2pfO#scrollTo=VxFOdsnDWl9B


Cross-lingual word embeddings (continued...)
Codes:
     embeddings = np.vstack(vectors)

     return embeddings, id2word, word2id

def get_nn(word, src_emb, src_id2word, tgt_emb, tgt_id2word, K=5):

    print("Nearest neighbors of \"%s\":" % word)

    word2id = {v: k for k, v in src_id2word.items()}

    word_emb = src_emb[word2id[word]]

    scores = (tgt_emb / np.linalg.norm(tgt_emb, 2, 1)[:, None]).dot(word_emb / 

np.linalg.norm(word_emb))

    k_best = scores.argsort()[-K:][::-1]

    for i, idx in enumerate(k_best):

        print('%.4f - %s' % (scores[idx], tgt_id2word[idx]))

src_path = '/content/en.cross.vec'

#tgt_path = '/content/hi.cross.vec'

tgt_path = '/content/hi.mono.vec'

nmax = 50000  # maximum number of word embeddings to load

src_embeddings, src_id2word, src_word2id = load_vec(src_path, nmax)

tgt_embeddings, tgt_id2word, tgt_word2id = load_vec(tgt_path, nmax)

    

https://colab.research.google.com/drive/1VIvxzmdZPyLojWZKuBxKgj2iBASK2pfO#scrollTo=VxFOdsnDWl9B
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