
Word Representation
in Deep Learning

Zishan Ahmad
 IIT Patna

Outline

1. Why word representation?
2. Non semantic word representations

a. One-hot vector representation

3. Semantic word representation
a. Distributional hypothesis
b. Co-occurrence matrix based representation
c. Language model
d. FFNN language model
e. Skip-gram model
f. Continuous Bag of Words model (CBoW)

4. Cross-lingual word embeddings
a. Why cross-lingual embeddings

Outline (continued...)

4. Crosslingual and Multi-lingual word embeddings
a. Supervised Methods

i. Parallel Corpus - Luong et al. 2015
ii. Comparable Corpus - Vulić and Moens, 2015
iii. Bilingual dictionary Induction

b. Unsupervised Methods - Artext et.al., 2018

Why word representation?

Definition : Word (Oxford Dictionary)

 A word is a single distinct meaningful element of speech or writing, used with
others (or sometimes alone) to form a sentence

- Words are stitched together to form a sentence
- Proper representation of words is essential for text representation

Non-semantic word representation

The vast majority of rule-based and statistical NLP work regards words as
atomic symbols

One-hot vector representation of words:

- Assign a unique id to each unique word in the corpus
- Convert these unique ids to one-hot vectors

Sentence: RMS Titanic was a British passenger liner.

Unique Ids: [1, 2, 3, 4, 5, 6, 7]

One-hot representation: [[1,0,0,0,0,0,0], [0,1,0,0,0,0,0], [0,0,1,0,0,0,0], [0,0,0,1,0,0,0], [0,0,0,0,1,0,0],
[0,0,0,0,0,1,0], [0,0,0,0,0,0,1]]

https://en.wikipedia.org/wiki/Superliner_(passenger_ship)

Non-semantic word representation
(continued...)

Python Code for categorical (one-hot) representation

from keras.utils import to_categorical

txt = "RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean in 1912 after

striking an iceberg during her maiden voyage from Southampton to New York City"

txt_list = txt.split()

word2id = {}

for i,j in enumerate(list(set(txt_list))):

 word2id[j] = i

txt_index = [word2id[i] for i in txt_list]

txt_one_hot = to_categorical(txt_index)

https://colab.research.google.com/drive/1EfnpvIGZp5SOHZCw4D3uDj-Z7hJ97KfJ#scrollTo=ir6D_R9x_TpY

Non-semantic word representation
(continued...)

Drawbacks of categorical representation:

- No semantics captured
- All the words are equally different from each other

- The euclidean distance between any two words is 1.41 units
- The cosine similarity between any two words is 0

- Curse of dimensionality (the length of the vector depends on the number of words in the
corpus)

- The vectors formed are sparse

Semantic word representation

We can get a lot of value by representing a word by means of its neighbors:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

Built in Belfast, Ireland, in the United Kingdom the RMS Titanic was the second of the three
Olympic-class ocean liners.

According to distributional hypothesis, all these words play a role in representing the meaning of
the word Titanic

Semantic word representation (continued…)

Using co-occurrence matrix to make neighbours represent words.

● Window based co-occurrence matrix captures syntactic (POS) and semantic information
● The matrix is symmetric, i.e. an occurrence is counted irrespective of left or right context
● Example corpus:

○ I like deep learning.
○ I like NLP.
○ I enjoy flying.

Semantic word representation (continued…)

Co-occurrence matrix example -

● Window size = 1

Semantic word representation (continued…)

Co-occurrence matrix example -

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhS
eVV

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV
https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV

Semantic word representation (continued…)
Code for co-occurence matrix creation:

import pandas as pd

import numpy as np

from collections import defaultdict

def co_occurrence(sentences, window_size):

 d = defaultdict(int)

 vocab = set()

 for text in sentences:

 text = text.lower().split()

 # iterate over sentences

 for i in range(len(text)):

 token = text[i]

 vocab.add(token) # add to vocab

 next_token = text[i+1 : i+1+window_size]

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV#scrollTo=cP1aY-QHpRh5

Semantic word representation (continued…)
Code for co-occurence matrix creation:

for t in next_token:

 key = tuple(sorted([t, token]))

 d[key] += 1

 # formulate the dictionary into dataframe

 vocab = sorted(vocab) # sort vocab

 df = pd.DataFrame(data=np.zeros((len(vocab), len(vocab)), dtype=np.int16),

 index=vocab,

 columns=vocab)

 for key, value in d.items():

 df.at[key[0], key[1]] = value

 df.at[key[1], key[0]] = value

 return df

docs = ["I like deep learning", "I enjoy NLP", "I enjoy flying"]

co_occurrence(docs, window_size=1)

https://colab.research.google.com/drive/10XCsBjW88b9pYiLgWADxVaDLhZHhSeVV#scrollTo=cP1aY-QHpRh5

Semantic word representation (continued…)

Problems with simple co-occurrence vectors:
- Increase in size with vocabulary
- Sparsity issue persists
- Very high dimensional: require a lot of storage

Semantic word representation (continued…)

Language Modeling:
Language Modeling (LM), is the development of probabilistic models that are able to predict the next
word in the sequence given the words that precede it.

● A language model learns the probability of word occurrence based on examples of text
● Simpler models may look at a context of a short sequence of words, whereas larger models

may work at the level of sentences or paragraphs
● Most commonly, language models operate at the level of words

Mathematically:
P(x1,x2,x3,...,xn) = P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,x2,...,xn-1)
P(“its water is so transparent”) = P(“its”)P(“water”|”its”)P(“is”|”its”,”water”)... P(“transparent”|”its”,
“water”, “is”, “so”)
P(“transparent”|”its water is so”) = count(transparent) / count(its water is so)

Semantic word representation (continued…)

Neural Language Modeling:
Feed Forward Neural Network Language Model (FFNNLM):

Semantic word representation (continued…)

Neural Language Modeling:
● Previous n-1 words are projected by shared projection matrix C∈ R|V|Xm , where |V| is the size

of the vocabulary and m is the size of the feature

● The input x of the FFNN is a concatenation of feature vectors of n−1 words

● Model is followed by Softmax output layer to guarantee all the conditional probabilities of words

positive and summing to one

● The final Softmax layer predicts the nth word (next word given the previous context)

Semantic word representation (continued…)

Skip-gram Model:
This is one of the methods used for the creation of Word2Vec word embeddings

Main ideas behind this method
- Instead of capturing co-occurrence counts directly, predict surrounding words for every word
- Predict surrounding words in a window of length m for every word
- Objective function: Maximize the log probability of any context word given the current center

word:

Semantic word representation (continued…)

Skip-gram Model:

Semantic word representation (continued…)

Skip-gram Model:

Semantic word representation

Continuous Bag of Words Model:
This is another method for creation of Word2Vec word embeddings

Main ideas behind this method
- Predict the current word based on other words in the context window m
- Objective function: Maximize the log probability of the current word given the context words

Semantic word representation (continued…)

Semantic word representation (continued…)
Code for word embedding creation:

from gensim.models import Word2Vec

sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'],

 ['this', 'is', 'the', 'second', 'sentence'],

 ['yet', 'another', 'sentence'],

 ['one', 'more', 'sentence'],

 ['and', 'the', 'final', 'sentence']]

train model

model = Word2Vec(sentences, min_count=1, size=300, sg=0) #sg ({0, 1}, optional) – Training algorithm: 1

for skip-gram; otherwise CBOW.

print(model)

summarize vocabulary

words = list(model.wv.vocab)

print(words)

access vector for one word

print(model['sentence'])

https://colab.research.google.com/drive/1fBp7mQZzgQvjinmu4QmpIASX9B5WtgRA#scrollTo=NOQPLWMOemin

Semantic word representation (continued…)
Code for word embedding creation:

model['this'].size

save model

model.save('model.bin')

load model

new_model = Word2Vec.load('model.bin')

print(new_model)

https://colab.research.google.com/drive/1fBp7mQZzgQvjinmu4QmpIASX9B5WtgRA#scrollTo=-3_44e0beduM

Semantic word representation (continued…)
Word2Vec demo:

from gensim.test.utils import common_texts, get_tmpfile

from gensim.models import Word2Vec

from gensim.models import KeyedVectors

import numpy as np

def cos(x1, x2):

 return np.dot(x1, x2)/(np.linalg.norm(x1)*np.linalg.norm(x2))

!wget -P /root/input/ -c

"https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz"

EMBEDDING_FILE = '/root/input/GoogleNews-vectors-negative300.bin.gz' # from above

word2vec = KeyedVectors.load_word2vec_format(EMBEDDING_FILE, binary=True)

print(word2vec["cat"].shape)

print(cos(word2vec['cat'],word2vec['purr']))

print(word2vec.similar_by_vector(word2vec["cat"], topn=10, restrict_vocab=None))

https://colab.research.google.com/drive/1mD5kkHLP5BhYH5HYBxxXuBiijBtA3CcM#scrollTo=ZfLdsQZ4OyAO

Semantic word representation (continued…)
Word2Vec demo:

Plotting word vectors:
import random

vocab = random.sample(list(word2vec.vocab), 50)

X = np.array([word2vec[v] for v in vocab])

import matplotlib.pyplot as plt

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=0)

np.set_printoptions(suppress=True)

Y = tsne.fit_transform(X)

plt.scatter(Y[:, 0], Y[:, 1])

for label, x, y in zip(vocab, Y[:, 0], Y[:, 1]):

 plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')

plt.show()

https://colab.research.google.com/drive/1mD5kkHLP5BhYH5HYBxxXuBiijBtA3CcM#scrollTo=ZfLdsQZ4OyAO

Cross-lingual word embeddings

Why do we need Cross-lingual Embeddings?
- Bridge the language divergence

Applications
- Leverage the resource-richness of one language (e.g., English) in solving a problem in

resource-constrained languages (e.g., Hindi, Marathi etc.)
- Useful for unsupervised machine translation

Cross-lingual word embeddings (continued...)
Problems with monolingual word embeddings

- Embedding of a word in one language (say, Spanish) and embedding of the same word (translated) in
other language (say, English) do not possess any association between them.

- Therefore, they cannot represent each other in the vector space (i.e., they cannot correlate).

Monolingual embeddings (Spanish and English) Cross-lingual embedding (Spanish and English)

Cross-lingual word embeddings (continued...)

Luong et al. 2015, Bilingual Word Representations with Monolingual Quality in Mind. In NAACL Workshop
on Vector Space Modeling for NLP.

Bi-lingual word embeddings aims to bridge the language divergence in the vector space.
- Idea is pretty simple

- Utilize existing word2vec skip-gram model (Mikolov., 2013a)
- For each word, define its context to include words from both the source and target

languages
- Requires a parallel corpus and alignment information among parallel sentences

Cross-lingual word embeddings (continued...)

Source: WS1 WS2 WS3 WS4 WS5 WS6

Alignment

Target: WT1 WT2 WT3 WT4 WT5 WT6 WT7

Word2Vector

WT2 WT3 WT5 WT6

WS3

Target side context

WS1 WS2 WS4 WS5

Source side context

WS3

Source

Target

Source-BWE
model

Target-BWE
model

Bilingual WE

Bi-lingual word embeddings

Alignment Info

Cross-lingual word embeddings (continued...)
Tomas Mikolov, Quoc V. Le, and Ilya Sutskever, 2013. Exploiting Similarities among Languages for
Machine Translation. In arXiv:1309.4168v1.

● Requires

○ Two monolingual embeddings

○ Bi-lingual dictionary

● Approach
○ Suppose we are given a set of word pairs and their associated vector representations {xi , zi}.
○ Goal is to find a transformation matrix W

○ For any given new word and its vector representation x, we can compute z = Wx.

Cross-lingual word embeddings (continued...)

cat बल्ली

Linear layer (W) for transforming English words to Hindi

Cross-lingual word embeddings (continued...)

Normalized word embedding and orthogonal transform for bilingual word translation (Xing et al.
2015):

- In, Exploiting Similarities among Languages for Machine Translation (Mikolov et at. 2013)
- Given a set of n word pairs and their vector representations {xi, yi}, where xi is a d1

dimensional vector and yi is a d2 dimensional vector
- Goal is to find W (dimension: d2❌ d1) such that Wxi approximates yi minW ||WX-Y||
- These results can be improved by enforcing an orthogonality constraint on W

WWT = I

Cross-lingual word embeddings (continued...)
Why is Orthogonality important

- It restricts transformation to only rotation
- Orthogonal transformation is length and angle preserving.
- Therefore it is an isometry of the Euclidean space (such as a rotation).

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)

Cross-lingual word embeddings (continued...)
Word translation without parallel data (Conneau et al. 2018)

Proposed complete unsupervised approach to cross-lingual mapping:
Basic steps:
● Learn W from domain adversarial training
● Use W to induce initial bilingual dictionary X, Y = {xi, yi}

n
i=1 using CSLS

(Cross-domain Similarity Local Scaling) metric
● Iteratively update, applying

○ W = UVT where UΣVT = SVD(YXT)
■ Also done using the following formula for weight updates:

○ And finding new X, Y = {xi, zi}
n

i=1 using CSLS metric
○ Continue till there are no new addition to the dictionary

Cross-lingual word embeddings (continued...)
Cross-domain Similarity Local Scaling (CSLS):

The following is the formula for CSLS:

- Here Wx is the transformation of source embedding (x) into the target space.

- Here NT(Wxs) is used to denote the neighborhood, associated with a mapped source word
embedding Wxs

This process increases the similarity associated with isolated word vectors, but
decreases the similarity of vectors lying in dense areas

Cross-lingual word embeddings (continued...)
Adversarial Training:

- Let X = {x1, x2, x3 …, xn} and Y= {y1, y2, y3, …, ym} be two sets of n and m word
embeddings coming from a source and a target language respectively.

- A model is trained to discriminate between elements randomly sampled from WX = {Wx1,
Wx2, ..., Wxn} and Y

Mapping/Generator DiscriminatorSample from X
xi Wxi

Sample from Y

 yi

Probability of
Source/Target

Cross-lingual word embeddings (continued...)
Codes:

import io

import numpy as np

def load_vec(emb_path, nmax=50000):

 vectors = []

 word2id = {}

 with io.open(emb_path, 'r', encoding='utf-8', newline='\n', errors='ignore') as f:

 next(f)

 for i, line in enumerate(f):

 word, vect = line.rstrip().split(' ', 1)

 vect = np.fromstring(vect, sep=' ')

 assert word not in word2id, 'word found twice'

 vectors.append(vect)

 word2id[word] = len(word2id)

 if len(word2id) == nmax:

 break

 id2word = {v: k for k, v in word2id.items()}

https://colab.research.google.com/drive/1VIvxzmdZPyLojWZKuBxKgj2iBASK2pfO#scrollTo=VxFOdsnDWl9B

Cross-lingual word embeddings (continued...)
Codes:
 embeddings = np.vstack(vectors)

 return embeddings, id2word, word2id

def get_nn(word, src_emb, src_id2word, tgt_emb, tgt_id2word, K=5):

 print("Nearest neighbors of \"%s\":" % word)

 word2id = {v: k for k, v in src_id2word.items()}

 word_emb = src_emb[word2id[word]]

 scores = (tgt_emb / np.linalg.norm(tgt_emb, 2, 1)[:, None]).dot(word_emb /

np.linalg.norm(word_emb))

 k_best = scores.argsort()[-K:][::-1]

 for i, idx in enumerate(k_best):

 print('%.4f - %s' % (scores[idx], tgt_id2word[idx]))

src_path = '/content/en.cross.vec'

#tgt_path = '/content/hi.cross.vec'

tgt_path = '/content/hi.mono.vec'

nmax = 50000 # maximum number of word embeddings to load

src_embeddings, src_id2word, src_word2id = load_vec(src_path, nmax)

tgt_embeddings, tgt_id2word, tgt_word2id = load_vec(tgt_path, nmax)

https://colab.research.google.com/drive/1VIvxzmdZPyLojWZKuBxKgj2iBASK2pfO#scrollTo=VxFOdsnDWl9B

References:
● Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient Estimation of Word Representations in Vector

Space. In arXiv preprint arXiv:1301.3781
● Tomas Mikolov, Quoc V. Le, and Ilya Sutskever, 2013b. Exploiting Similarities among Languages for Machine Translation. In

arXiv preprint arXiv:1309.4168v1
● Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Bilingual Word Representations with Monolingual

Quality in Mind. In NAACL Workshop on Vector Space Modeling for NLP. Denver, United States, pages 151–159.
● Ivan Vulić and Marie-Francine Moens. 2015. Bilingual Word Embeddings from Non-Parallel Document-Aligned Data

Applied to Bilingual Lexicon Induction. In 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Beijing, China, 719–725.

● Manaal Faruqui and Chris Dyer. 2014. Improving Vector Space Word Representations Using Multilingual Correlation. In
14th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational
Linguistics, Gothenburg, Sweden, 462–471.

● Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilingual mappings of word embeddings while
preserving monolingual invariance. In 2016 Conference on Empirical Methods in Natural Language Processing, pages
2289-2294

● Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no bilingual data.
In 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 451-462.

● Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal transform for bilingual
word translation. In Proceedings of NAACL.

● Peter H Schonemann. 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1–10.
● Conneau, Alexis, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017. Word translation

without parallel data." In arXiv preprint arXiv:1710.04087.

