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Motivation
• Conversational Agents: Facebook (M), Apple (Siri), 

Google etc.
• Google Assistant: Ask it questions. Tell it to do things.
• Jeopardy!: In 2011, the IBM Watson computer system 

competed on Jeopardy! against former winners and won the 
first place prize.

• Biomedical and Clinical QA: Urgent need of system that 
accepts the queries from medical practitioners in natural 
language and returns the answers quickly and efficiently 
from biomedical literature, EMR etc.

• Online knowledge service: The online service provide the 
answer of various question from science, mathematics etc.



Motivation and History
• Open domain QA systems received larger attention in the 

90s
–  Combination of NLP and IR/IE techniques
–  One of the most famous: MIT START system
–  Wolfram Alpha

• Advanced systems use a combination of “shallow” methods 
together with knowledge bases and more complex NLP 
methods.

• In the last 20 years, TREC, SemEval and ACL provided 
workshops and tracks for various flavor of QA tasks (closed 
and open-domain)



Motivation and History (cont’d…)
• Lately, a large number of new datasets and tasks have become 

available which have improved the performance of 
(open-domain) QA systems
– VisualQA

• Given an image and a question in natural language, provide 
the correct answer 

• 600,000+ questions on more than 200,000 images
–  SQuAD - Stanford QA Dataset

• Open-domain question answering
•  100,000+ Q-A pairs on 500+ articles

–  NewsQA dataset
• Crowd-sourced machine reading comprehension dataset
• 120,000 answered questions Over 12,000 news articles

• We are build a comparable QA dataset from two language 
English & Hindi



AskMSR: Shallow approach



AskMSR: Details



Step 1: Rewrite queries



Query rewriting



Next Steps



Mining N-Grams



Filtering N-Grams



Tiling the Answers



Basic Q/A Architecture



Common Evaluation Metrics
• Accuracy (does answer match gold-labeled answer?)
• Mean Reciprocal Rank:

– The reciprocal rank of a query  response is the  inverse of 
the rank of the first correct answer.

– The mean reciprocal rank is the average of thereciprocal
ranks  of results for a sample of queries Q.



Machine Comprehension
• Machine Comprehension or Machine Reading 

Comprehension (MRC) is all about answering a 
query about a given context paragraph.

• “A machine comprehends a passage of text if, for 
any question regarding that text that can be 
answered correctly by a majority of native speakers, 
that machine can provide a string which those 
speakers would agree both answers that question, 
and does not contain information irrelevant to that 
question.”

    (Burges 2013)



A Brief History of Machine 
Comprehension

• Much early NLP work attempted reading comprehension
– Schank, Abelson, Lehnert et al. c. 1977 – “Yale A.I. Project”

•   Revived by Lynette Hirschman in 1999:
–  Could NLP systems answer human reading comprehension  questions for 

3rd to 6th graders?   Simple methods attempted.
• Revived again by Chris Burges in 2013 with MCTest

–  Again answering questions over simple story texts
• Floodgates opened in 2015/16 with the production of large datasets which 
permit supervised      neural systems to be built

–  Hermann et al. (NIPS 2015) DeepMind CNN/DM dataset
– Rajpurkar et al. (EMNLP 2016) SQuAD
– MS MARCO, TriviaQA, RACE, NewsQA, NarrativeQA,  HotpotQA



Machine Comprehension
 



Motivation (1)
• Teaching machines to understand human language 

is a long-standing challenge in AI.
•  Requires various aspects of text understanding.

–  Part-of-speech Tagging
–  Named Entity Recognition
–  Syntactic Parsing
–  Coreference resolution

•  Is there a comprehensive evaluation that can test all 
these aspects and probe even deeper levels of 
understanding?  
– Machine Comprehension



Motivation (2)
• Reading comprehension:  tests to measure how well 

a human has understood a piece of text.
• Machine comprehension: how well computer 

systems understand human language.
• Machine comprehension could be the most suitable 

task for evaluating language understanding 



Datasets
Before 2015  
• MCTest (Richardson et al, 

2013): 2600 questions 
•  ProcessBank (Berant et al, 

2014): 500 questions

After 2015



QA vs. Machine Comprehension
•  Reading comprehension as an instance of question 

answering because it is essentially a question answering 
problem over a short passage of text. 

• Question answering is to build computer systems which 
are able to automatically answer questions posed by 
humans from various sources.

• Machine comprehension puts more emphasis on text 
understanding with answering questions regarded as a 
way to measure language understanding. 



Approaches
• Machine Learning Approaches

–  Sliding Window (Richardson et. Al, 2013)
• Compute the unigram/bigram overlap between the sentence 

containing the candidate answer and the question.
•  Use TF-IDF based similarity to select the best candidate answer.

–  Logistic Regression (Rajpurkar et. Al, 2013)
• Extract several types of features for each candidate answer
• Features

– Matching Word Frequencies
– Matching Bigram Frequencies
– Lengths
– Span POS Tags
– …..



Approaches
• Deep Learning Approaches

– Stanford Attentive Reader (Chen et al, 2016)



Deep Learning Approaches
– Stanford Attentive Reader (Chen et al, 2016)
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Deep Learning Approaches

CNN/Daily Mail Datasets 
•  Still noisy and artificial (not real questions) 
•  Not hard enough for reasoning and inference
• Does it work for a real QA problem?



Stanford Question Answering Dataset 
(SQuAD)

•  Passage + Question  🡪 Answer
–  Passage: selected from Wikipedia 
–  Question: crowdsourced 
–  Answer: must be a span in the passage

Extractive Question Answering
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Stanford Question Answering Dataset 
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Deep Learning Approaches
(Minjoon  et. Al, 2018)
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