
Introduction to Neural Networks

AI-NLP-ML Group
Department of Computer Science and Engineering

IIT Patna

Outline
● Neural Networks

○ Introduction
○ Motivation
○ Biological Neurons and its Operations

● Perceptron Model
○ What is Perceptron?
○ Perceptron Training Algorithm

● Activation Functions
○ Definition
○ Types of Activation Functions

● Feed-forward Neural Networks
● Objective Functions

○ Definition
○ Types of Objective Functions

2

● Optimization
○ Motivation
○ Gradient and Hessian
○ Gradient Descent Optimization
○ Gradient Descent Variants

● Backpropagation Algorithm
○ Introduction
○ Backpropagation for outermost

layers
○ Backpropagation for hidden

layers
● References

Neural Networks
• Neural Networks are networks

of interconnected neurons, for
example in human brains.

• Artificial Neural Networks are
highly connected to other
neurons, and performs
computations by combining
signals from other neurons.

3

• Outputs of these computations may be transmitted to one or more
other neurons.

• The neurons are connected together in a specific way to perform a
particular task.

Artificial Neural Networks (High-Level Overview)

4

• A neural network is a function.
• It consists of basically:

a. Neurons: which pass input values through functions and output the
result.

b. Weights: which carry values (real-number) between neurons.
• Neurons can be categorized into layers:

a. Input Layer
b. Hidden Layer
c. Output Layer

Neurophysiology

5

• The human nervous system can be divided into three stages:
a. Receptors:

■ Convert stimuli from the external environment into electrical impulses
■ Rods and Cones of eyes,
■ Pain, touch, hot and cold receptors of skin.

b. Neural Net:
■ Receive information, process it and make appropriate decisions.
■ Brain

c. Effectors:
■ Convert electrical impulses generated by the the neural net (brain) into responses to the

external environment.
■ Muscles and glands, speech generators.

Basic Components of Biological Neurons

6

The basic components of a biological
neuron are:

● Cell Body (Soma) processes the incoming activations
and converts them into output activations.

● Neuron Nucleus contains the genetic material (DNA).
● Dendrites form a fine filamentary bush each fiber

thinner than an axon.
● Axon: Long thin cylinder carrying impulses from soma

to other cells
● Synapses: The junctions that allow signal

transmission b/w the axons and dendrites.

Computation in Biological Neurons

7

● Incoming signals from synapses
are summed up at the soma.

● On crossing a threshold, the cell
fires generating an action potential
in the axon hillock region.

The Perceptron Model

8

● Motivated by the biological
neuron.

● A perceptron is a computing
element where inputs are
associated with the weights and
the cell having a threshold value.

x
1

x
n

x
2

w1

w2

wn

y

The Perceptron Model

9

● Rewrite Σ wi
 xi as w.x

● Replace threshold = -b
● b: Bias, a prior inclination towards

some decision.

x
1

x
n

x
2

w1

w2

wn

y

A simple decision via Perceptron

10

● Whether should you go to watch
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this

weekend? (x1)
○ Does your friend want to go

with you? (x2)
○ Do you have pending

assignments due on the
weekend? (x3)

x
1

x
n

x
2

w1

w2

wn

y

A simple decision via Perceptron

11

● Whether should you go to watch
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this

weekend? (x1=1)
○ Does your friend want to go

with you? (x2=0)
○ Do you have pending

assignments due on the
weekend? (x3=1)

x
1

x
3

x
2

5

3

2

0

b= -8

A simple decision via Perceptron

12

● Whether should you go to watch
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this

weekend? (x1=1)
○ Does your friend want to go

with you? (x2=0)
○ Do you have pending

assignments due on the
weekend? (x3=0)

x
1

x
3

x
2

5

3

2

1

b= -3

Emulating Logical Gates with Perceptron

13

x1

x2

-2

5

3

x1

x2

-6

5

3

x1
2

-3

x1

x2

6

-5

-3

OR

NOT
NAND

AND

Perceptron Training

14

Step-1: Absorb bias b as weight.

Step-2: Start with a random value of
weight wj

Step-3: Predict for each input xi :
If the prediction is correct ∀x, then
Return w
Step-4: On a mistake for given input x
, update as follows:

● Mistake on positive (y=1), update wj+1⬅ wj + x
● Mistake on negative (y=0), update wj+1⬅ wj - x

x
1

x
n

x
2

w1

w2

wn

y

Convergence of Perceptron Training

15

 AND XOR

 (source: https://jarvmiller.github.io/2017/10/14/neural-nets-pt1/)

● Whatever be the initial choice of weights and whatever be the input
vector, PTA converges if the vectors are from a linearly separable
function.

● If the weight repeats while training the perceptron, then the function is
not linearly separable.

Activation Functions

16

● Activation function decide whether a neuron should be activated or
not.

● It helps the network to use the useful information and suppress the
irrelevant information.

● Usually a nonlinear function.
○ What if we choose a linear?
○ Linear classifier
○ Limited capacity to solve complex problems.

Activation Functions (cont’d)

17

● Sigmoid

○ continuously differentiable
○ ranges from 0-1
○ not symmetric around the origin

● Tanh
○
○
○ scaled version of the sigmoid
○ symmetric around the origin
○ vanishing gradient

Activation Functions (cont’d)

18

● ReLU

○ Also called piecewise linear function because
rectified function is linear for half of the input
domain and nonlinear for the other half.

○ trivial to implement
○ sparse representation
○ avoid the problem of vanishing gradients
○ dead neurons

Representation Power

19

● A neural network with at least one hidden layer can approximate any
function.[1]

● The representation power of network increase with more hidden units
and more hidden layers.

●

[1] Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.

But, “with great power comes great overfitting”

Feed-forward Neural Network

20

a1

a2

a3

x1

x2

y1

a4

x3

y2

Input Hidden Output

 Objective Function
● The function we want to minimize or maximize is called the objective

function or criterion.
● When we are minimizing it, we may also call it the cost function, loss

function, or error function.
● A loss function tells how good our current classifier is.
● Given a dataset:

21

 Objective Function (cont’d)
● Mean Squared Error:

○ Mean Squared Error (MSE), or quadratic, loss function is widely
used in linear regression as the performance measure.

○ It measures the average of the squares of the errors—that is, the
average squared difference between the estimated values and the
actual value.

○ It is always non-negative, and values closer to zero are better.

22

 Objective Function (cont’d)
● Mean Absolute Error:

○ Mean Absolute Error (MAE) is a quantity used to measure how
close forecasts or predictions are to the eventual outcomes.

○ Both MSE and MAE are used in predictive modeling.
○ MSE has nice mathematical properties which makes it easier to

compute the gradient.

23

 Objective Function (cont’d)
● Cross-entropy:

○ Coss-entropy comes from the field of information theory and has
the unit of “bits.”

○ The cross-entropy between a “true” distribution p and an estimated
distribution q is defined as:

○ Cross-entropy can be re-written in terms of the entropy
andKullback-Leibler divergence between the two distributions

24

 Objective Function (cont’d)
● Cross-entropy:

○ Assuming a ground truth probability distribution that is 1 at the
right class and 0 everywhere else p = [0,…,0,1,0,…0] and our
computed probability is q

○ Kullback-Leibler divergence can be written as:

25

Optimization
● The goal of optimization is to find parameter (weights) that minimizes

the loss function.
● How to find such weights?

○ Random Search
■ Very bad idea.

○ Random Local Search
■ Start with a random weight w and generate random perturbations Δw to it and if

the loss at the perturbed w+Δw is lower, we will perform an update.
■ Computationally expensive

○ Follow the Gradient
■ No need to search for a good direction.
■ We can compute the best direction along which we should change our weight

vector that is mathematically guaranteed to be the direction of the steepest
descent.

26

Optimization (cont’d)
Find w which minimizes the chosen
error function E(w)

● wA : a local minimum
● wB : a global minimum
● At point wC local gradient is given

by vector ΔE(w)
● It points in direction of greatest

rate of increase of E(w)
● Negative gradient points to rate

of greatest decrease 27

Optimization (cont’d)
Find w which minimizes the chosen
error function E(w)

● wA : a local minimum
● wB : a global minimum
● At point wC local gradient is given

by vector ΔE(w)
● It points in direction of greatest

rate of increase of E(w)
● Negative gradient points to rate

of greatest decrease 28

Gradient and Hessian
● First derivative of a scalar function E(w) with respect to a vector

w=[w1,w2]T is a vector called the Gradient of E(w)

● Second derivative of a scalar function E(w) with respect to a vector
w=[w1,w2]T is a matrix called the Hessian of E(w)

29

Gradient Descent Optimization
● Determine weights w from labeled set of training samples.
● Take a small step in the direction of the negative gradient

 wnew = wold - η ΔE(wold)

● After each update, the gradient is re-evaluated for the new weight
vector and the process is repeated

● This size of steps η taken to reach the minimum or bottom is called
Learning Rate.

30

Gradient Descent Variants
● Batch gradient descent:

○ Vanilla gradient descent, aka batch gradient descent, computes
the gradient of the cost function w.r.t. to the parameters w for the
entire training dataset.

○ wnew = wold - η ΔE(wold)

○ Guaranteed to converge to global minimum for convex error
surfaces and to a local minimum for non-convex surfaces.

○ Need to calculate the gradients for the whole dataset to perform
just one update.

○ Very slow and is intractable for datasets that don't fit in memory.

31

Gradient Descent Variants
● Stochastic gradient descent:

○ Stochastic gradient descent (SGD) in
contrast performs a parameter update
for each training example, say (xi, yi)

○ wnew = wold - η ΔE(wold:; xi ; yi)
○ Much faster (avoid redundancy as

exist in Batch gradient descent)
○ While slowly decreasing the learning

rate, SGD shows the same
convergence behaviour as batch
gradient descent.

○ It performs frequent updates with a
high variance that cause the objective
function to fluctuate heavily. 32

Gradient Descent Variants
● Mini-batch gradient descent:

○ Performs update for every mini-batch of n examples.
○ wnew = wold - η ΔE(wold:; xi:i+n ; yi:i+n)
○ Reduces variance of updates.
○ Algorithm of choice
○ Mini-batch size is a hyperparameter. Common sizes are 50-256.

33

Backpropagation Algorithm
● Backpropagation algorithm is used to train artificial neural networks, it

can update the weights very efficiently.
● It is a computationally efficient approach to compute the derivatives of

a complex cost function.
● Goal is to use those derivatives to learn the weight coefficients for

parameterizing a multi-layer artificial neural network.
● It compute the gradient of a cost function with respect to all the

weights in the network, so that the gradient is fed to the gradient
descent method which in turn uses it to update the weights in order to
minimize the cost function.

34

Backpropagation Algorithm (cont’d)
● Chain Rule:

○ Single Path

○ Multiple Path

35

x y z

x

y
1

y
2

z

Backpropagation Algorithm (cont’d)
● The total error in the network for

a single input is given by the
following equation

36

Input (i) Hidden (j) Output (k)

wij
wjk

Backpropagation Algorithm (cont’d)
● There are two sets of weights in

our network:
○ wij : from the input to the hidden

layer.

○ wjk : from the hidden to the output
layer.

● We want to adjust the network’s
weights to reduce this overall
error.
○

37

Input (i) Hidden (j) Output (k)

wij
wjk

Backpropagation Algorithm (cont’d)
● Backpropagation – for

outermost layer
○ outermost layer parameters

directly affect the value of the
error function.

○ only one term of the E
summation will have a
non-zero derivative: the one
associated with the particular
weight we are considering.

38

Input (i) Hidden (j) Output (k)

wij
wjk

Backpropagation Algorithm (cont’d)
● Backpropagation – for

outermost layer

39

Input (i) Hidden (j) Output (k)

wij wjk

Backpropagation Algorithm (cont’d)
● Backpropagation – for

outermost layer

40

Input (i) Hidden (j)
Output (k)

wij wjk

For sigmoid activation function

Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden

layer

41

Input (i) Hidden (j)
Output (k)

wij wjk

Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden

layer

42

Input (i) Hidden (j) Output (k)

wij wjk

Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden

layer

43

Input (i) Hidden (j)
Output (k)

wij wjk

References

44

● https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf
● https://cs224d.stanford.edu/lecture_notes/notes3.pdf
● http://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/3_29-NNs.pdf
● https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.1-FeedFor.pdf
● http://ruder.io/optimizing-gradient-descent/
● http://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/Perceptron-01-25-2019.pdf
● http://www.cs.cornell.edu/courses/cs5740/2016sp/resources/backprop.pdf

https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf
https://cs224d.stanford.edu/lecture_notes/notes3.pdf
http://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/3_29-NNs.pdf
https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.1-FeedFor.pdf
http://ruder.io/optimizing-gradient-descent/
http://www.cs.cmu.edu/~ninamf/courses/315sp19/lectures/Perceptron-01-25-2019.pdf
http://www.cs.cornell.edu/courses/cs5740/2016sp/resources/backprop.pdf

Thank You!

AI-NLP-ML Group, Department of CSE, IIT Patna (http://www.iitp.ac.in/~ai-nlp-ml/)

45

http://www.iitp.ac.in/~ai-nlp-ml/

