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Neural Networks
• Neural Networks are networks 

of interconnected neurons, for 
example in human brains.

• Artificial Neural Networks are 
highly connected to other 
neurons, and performs 
computations by combining 
signals from other neurons.

3

• Outputs of these computations may be transmitted to one or more 
other neurons.

• The neurons are connected together in a specific way to perform a 
particular task.



Artificial Neural Networks (High-Level Overview)
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• A neural network is a function.
• It consists of basically:

a. Neurons: which pass input values through functions and output the 
result.

b. Weights: which carry values ( real-number) between neurons.
• Neurons can be categorized into layers:

a. Input Layer
b. Hidden Layer
c. Output Layer



Neurophysiology
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• The human nervous system can be divided into three stages:
a. Receptors:

■ Convert stimuli from the external environment into electrical impulses
■ Rods and Cones of eyes,
■ Pain, touch, hot and cold receptors of skin.

b. Neural Net:
■ Receive information, process it and make appropriate decisions.
■ Brain

c. Effectors:
■ Convert electrical impulses generated by the the neural net (brain) into responses to the 

external environment.
■ Muscles and glands, speech generators.



Basic Components of Biological Neurons
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The basic components of a biological 
neuron are:

● Cell Body (Soma) processes the incoming activations 
and converts them into output activations.

● Neuron Nucleus contains the genetic material (DNA).
● Dendrites  form a fine filamentary bush each fiber 

thinner than an axon.
● Axon: Long thin cylinder carrying impulses from soma 

to other cells
● Synapses: The junctions that allow signal 

transmission b/w the axons and dendrites.



Computation in Biological Neurons
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● Incoming signals from synapses 
are summed up at the soma.

● On crossing a threshold, the cell 
fires generating an action potential 
in the axon hillock region.



The Perceptron Model
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● Motivated by the biological 
neuron.

● A perceptron is a computing 
element where inputs are 
associated with the weights and 
the cell having a threshold value.
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The Perceptron Model
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● Rewrite Σ wi
 xi as w.x

● Replace threshold = -b 
● b: Bias, a prior inclination towards 

some decision.
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A simple decision via Perceptron
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● Whether should you go to watch  
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this 

weekend? (x1)
○ Does your friend want to go 

with you? (x2)
○ Do you have pending 

assignments due on the 
weekend? (x3)
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A simple decision via Perceptron
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● Whether should you go to watch  
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this 

weekend? (x1=1)
○ Does your friend want to go 

with you? (x2=0)
○ Do you have pending 

assignments due on the 
weekend? (x3=1)
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A simple decision via Perceptron
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● Whether should you go to watch  
movie this weekend?

● The decision variables are:
○ Is there any extra lecture this 

weekend? (x1=1)
○ Does your friend want to go 

with you? (x2=0)
○ Do you have pending 

assignments due on the 
weekend? (x3=0)
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Emulating Logical Gates with Perceptron
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Perceptron Training
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Step-1: Absorb bias b  as weight.

Step-2: Start with a random value of 
weight wj

Step-3: Predict for each input xi :
If  the prediction is correct ∀x, then
Return w
Step-4: On a mistake for given input x 
, update as follows: 

● Mistake on positive (y=1), update wj+1⬅ wj + x
● Mistake on negative (y=0), update wj+1⬅ wj - x
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Convergence of Perceptron Training
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        AND  XOR

 (source: https://jarvmiller.github.io/2017/10/14/neural-nets-pt1/)

● Whatever be the initial choice of weights and whatever be the input 
vector, PTA converges if the vectors are from a linearly separable 
function.

● If the weight repeats while training the perceptron, then the function is 
not linearly separable.



Activation Functions
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● Activation function decide whether a neuron should be activated or 
not. 

● It helps the network to use the useful information and suppress the 
irrelevant information.

● Usually a nonlinear function.
○ What if we choose a linear? 
○  Linear classifier
○  Limited capacity to solve complex problems. 



Activation Functions (cont’d)
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● Sigmoid

○ continuously differentiable
○ ranges from 0-1
○ not symmetric around the origin 

● Tanh
○
○
○ scaled version of the sigmoid
○ symmetric around the origin
○ vanishing gradient 



Activation Functions (cont’d)
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● ReLU

○ Also called piecewise linear function because 
rectified function is linear for half of the input 
domain and nonlinear for the other half.

○ trivial to implement
○ sparse representation
○ avoid the problem of vanishing gradients
○ dead neurons



Representation Power
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● A neural network with at least one hidden layer can approximate any 
function.[1]

● The representation power of network increase with more hidden units 
and more hidden layers.

●

[1] Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.

But, “with great power comes great overfitting”



Feed-forward Neural Network
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 Objective Function 
● The function we want to minimize or maximize is called the objective 

function or criterion.
● When we are minimizing it, we may also call it the cost function, loss 

function, or error function.
● A loss function tells how good our current classifier is.
● Given a dataset: 
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 Objective Function (cont’d) 
● Mean Squared Error:

○ Mean Squared Error (MSE), or quadratic, loss function is widely 
used in linear regression as the performance measure.

○ It measures the average of the squares of the errors—that is, the 
average squared difference between the estimated values and the 
actual value.

○ It is always non-negative, and values closer to zero are better.
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 Objective Function (cont’d) 
● Mean Absolute Error:

○ Mean Absolute Error (MAE) is a quantity used to measure how 
close forecasts or predictions are to the eventual outcomes.

○ Both MSE and MAE are used in predictive modeling.
○ MSE has nice mathematical properties which makes it easier to 

compute the gradient. 
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 Objective Function (cont’d) 
● Cross-entropy:

○  Coss-entropy comes from the field of information theory and has 
the unit of “bits.” 

○ The cross-entropy between a “true” distribution p and an estimated 
distribution q is defined as:

○ Cross-entropy can be re-written in terms of the entropy
andKullback-Leibler divergence between the two distributions
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 Objective Function (cont’d) 
● Cross-entropy:

○ Assuming a ground truth probability distribution that is 1 at the
right class and 0 everywhere else p = [0,…,0,1,0,…0]  and our
computed probability is q

○ Kullback-Leibler divergence can be written as:
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Optimization
● The goal of optimization is to find parameter (weights)  that minimizes 

the loss function.
● How to find such weights?

○ Random Search
■ Very bad idea.

○ Random Local Search
■ Start with a random weight w and generate random perturbations Δw to it and if 

the loss at the perturbed w+Δw is lower, we will perform an update.
■ Computationally expensive

○ Follow the Gradient
■ No need to search for a good direction.
■ We can compute the best direction along which we should change our weight 

vector that is mathematically guaranteed to be the direction of the steepest 
descent. 
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Optimization (cont’d)
Find w which minimizes the chosen 
error function E(w)

● wA : a local minimum
● wB : a global minimum
● At point wC local gradient is given 

by vector ΔE(w)
● It points in direction of greatest 

rate of increase of E(w)
● Negative gradient points to rate 

of greatest decrease 27



Optimization (cont’d)
Find w which minimizes the chosen 
error function E(w)

● wA : a local minimum
● wB : a global minimum
● At point wC local gradient is given 

by vector ΔE(w)
● It points in direction of greatest 

rate of increase of E(w)
● Negative gradient points to rate 

of greatest decrease 28



Gradient and Hessian
● First derivative of a scalar function E(w) with respect to a vector 

w=[w1,w2]T is a vector called the Gradient of E(w) 

● Second derivative of a scalar function E(w) with respect to a vector 
w=[w1,w2]T is a matrix called the Hessian of E(w) 
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Gradient Descent Optimization
● Determine weights w from labeled set of training samples.
● Take a small step in the direction of the negative gradient

            wnew  =  wold  -  η  ΔE(wold)

● After each update, the gradient is re-evaluated for the new weight 
vector and the process is repeated

● This size of steps η taken to reach the minimum or bottom is called 
Learning Rate.
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Gradient Descent Variants
● Batch gradient descent:

○ Vanilla gradient descent, aka batch gradient descent, computes 
the gradient of the cost function w.r.t. to the parameters w for the 
entire training dataset.

○   wnew  =  wold  -  η  ΔE(wold)

○ Guaranteed to converge to global minimum for convex error 
surfaces and to a local minimum for non-convex surfaces.

○ Need to calculate the gradients for the whole dataset to perform 
just one update.

○ Very slow and is intractable for datasets that don't fit in memory.
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Gradient Descent Variants
● Stochastic gradient descent:

○ Stochastic gradient descent (SGD) in 
contrast performs a parameter update 
for each training example, say (xi, yi)

○   wnew  =  wold  -  η  ΔE(wold:; xi ;  yi)
○ Much faster (avoid redundancy as 

exist in Batch gradient descent)
○ While slowly decreasing the learning 

rate, SGD shows the same 
convergence behaviour as batch 
gradient descent.

○ It performs frequent updates with a 
high variance that cause the objective 
function to fluctuate heavily. 32



Gradient Descent Variants
● Mini-batch gradient descent:

○ Performs update for every mini-batch of n examples.
○   wnew  =  wold  -  η  ΔE(wold:; xi:i+n ;  yi:i+n)
○ Reduces variance of updates.
○ Algorithm of choice
○ Mini-batch size is a hyperparameter. Common sizes are 50-256.
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Backpropagation Algorithm
● Backpropagation algorithm is used to train artificial neural networks, it 

can update the weights very efficiently.
● It is a computationally efficient approach to compute the derivatives of 

a complex cost function.
● Goal is to use those derivatives to learn the weight coefficients for 

parameterizing a multi-layer artificial neural network.
● It compute the gradient of a cost function with respect to all the 

weights in the network, so that the gradient is fed to the gradient 
descent method which in turn uses it to update the weights in order to 
minimize the cost function.
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Backpropagation Algorithm (cont’d)
● Chain Rule:

○ Single Path

○ Multiple Path
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Backpropagation Algorithm (cont’d)
● The total error in the network for 

a single input is given by the 
following equation

36

Input (i) Hidden (j) Output (k)

wij
wjk



Backpropagation Algorithm (cont’d)
● There are two sets of weights in 

our network:
○ wij  :  from the input to the hidden 

layer.

○ wjk : from the hidden to the output 
layer.

● We want to adjust the network’s 
weights to reduce this overall 
error.
○

37

Input (i) Hidden (j) Output (k)

wij
wjk



Backpropagation Algorithm (cont’d)
● Backpropagation – for 

outermost layer 
○ outermost layer parameters 

directly affect the value of the 
error function.

○ only one term of the E 
summation will have a 
non-zero derivative: the one 
associated with the particular 
weight we are considering.
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Backpropagation Algorithm (cont’d)
● Backpropagation – for 

outermost layer 
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Backpropagation Algorithm (cont’d)
● Backpropagation – for 

outermost layer 
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For sigmoid activation function



Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden 

layer 
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Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden 

layer 
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Backpropagation Algorithm (cont’d)
● Backpropagation – for hidden 

layer 
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Thank You!

AI-NLP-ML Group, Department of CSE, IIT Patna (http://www.iitp.ac.in/~ai-nlp-ml/)
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