

Convolutional and Recurrent Neural Networks

Md Shad Akhtar Assistant Professor Department of Computer Science & Engineering

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

shad.akhtar@iiitd.ac.in, https://iiitd.ac.in/shad

Outline

- Deep Learning
- AutoEncoder
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Long Short Term Memory (LSTM)
- Gated Recurrent Unit (GRU)
- Attention Mechanism
- Few NLP Applications

Few key terms to start with

- Neurons
- Layers
 - Input, Output and Hidden
- Activation functions
 - Sigmoid, Tanh, Relu
- Softmax
- Weight matrices
 - \circ Input \rightarrow Hidden, Hidden \rightarrow Hidden, Hidden \rightarrow Output
- Backpropagation
 - Optimizers
 - Gradient Descent (GD), Stochastic Gradient Descent (SGD), Adam etc.
 - Error (Loss) functions
 - Mean-Squared Error, Cross-Entropy etc.
 - Gradient of error
 - Passes: Forward pass and Backward pass

History of Neural Network and Deep learning

- Neural Network and Perceptron learning algorithm: [McCulloch and Pitts (1943), Rosenblatt (1957)]
- Backpropagation: Rumelhart, Hinton and Williams, 1986
 - Theoretically, a neural network can have any number of hidden layers.
 - But, in practice, it rarely had more than one layer hidden layers.
 - Computational issue: Limited computing power
 - Algorithmical issues: Vanishing gradient and Exploding gradient.
- Beginning of Deep learning: Late 1990's and early 2000's
 - Solutions:
 - Computational issue: Advance computing powers such as GPUs, TPUs
 - Algorithmical issues
 - Pre-training (e.g., AutoEncoder, RBM)
 - Better architectures (e.g., LSTM)
 - Better activation functions (e.g., Relu)

Deep Learning vs Machine Learning Paradigm

- The main advantage of deep learning based approaches is the trainable features, i.e., it extracts relevant features, on its own, during training.
- Requires minimal human intervention.

Why Deep Learning?

- Recall, artificial neural network tries to mimic the functionality of a brain.
- In brain, computations happen in layers.

- View of representation
 - As we go up in the network, we get high-level Ο representations \Rightarrow Assists in performing more complex tasks.

Why Deep Architectures were hard to train?

• General weight-updation rule

$$w_{ij} = w_{ij} + \Delta w_{ij}$$
$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$
$$= -\eta \delta_j o_i$$
$$\delta_j = \delta_k w_{jk} \sigma'$$

- For lower-layers in deep architecture
 - $\circ \quad \delta_i$ will vanish, if it is less than 1
 - $\vec{\delta_i}$ will explode, if it is more than 1

Layer-wise pre-training

AutoEncoder

AutoEncoder: Layer 1

$$z = f(x)$$
,
where $z \approx x$

AutoEncoder: Layer 2

AutoEncoder: Layer 3

AutoEncoder: Pre-trained network

Deep Learning Architectures

- Convolutional neural network (CNN)
 - Aims to extract the local spatial features
- Recurrent neural network (RNN)
 - Exploits the sequential information of a sentence (sentence is a sequence of words).

Convolutional Neural Network

LeCunn and Bengio (1995)

Convolutional Neural Networks (CNN)

- A CNN consists of a series (\geq 1) of convolution layer and pooling layer.
- Convolutional operation extracts the feature representations from the input data.
 - Shares the convolution filters over different spatial locations, in a quest of extracting location-invariant features in the input.
 - Shape and weights of the convolution filter determine the features to be extracted from the input data.
 - In general, multiple filters of different shapes are used to ensure the diversity in the extracted features.
- Pooling operation extracts the most relevant features from the convoluted features. Similar to downsampling in image-processing.

CNN

For an input $X \in \mathbb{R}^{n \times d}$ and filter $F \in \mathbb{R}^{m \times d}$,

Ihput

Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN)

- A neural network with feedback connections
- Enable networks to do temporal processing
- Good at learning sequences
- Acts as memory unit

$$h_t = tanh(W_{IH} \cdot x_t + W_{HH} \cdot h_{t-1} + b)$$

 $= tanh([W_{IH}, W_{HH}] \cdot [x_t, h_{t-1}] + b)$

RNN - Example 1

Part-of-speech tagging:

• Given a sentence X, tag each word its corresponding grammatical class.

RNN - Example 2

Character level language model:

• Given previous and current characters, predict the next character in the sequence.

Let

- Vocabulary: [h,e,l,o]
- One-hot representations
 - h = [1 0 0 0]
 - e = [0 1 0 0]
 - I = [0010]
 - o = [0 0 0 1]

Training of RNNs

How to train RNNs?

- Typical FFN
 - Backpropagation algorithm
- RNNs
 - A variant of backpropagation algorithm namely **Back-Propagation Through Time (BPTT)**.

BackPropagation Through Time (BPTT)

Error for an instance = Sum of errors at each time step of the instance

Gradient of error

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_t}{\partial W}$$

BackPropagation Through Time (BPTT)

For V

 $\frac{\partial E_3}{\partial V} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial V}$

For W (Similarly for U)

 $\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$

 $\frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$

Visualization of RNN through Feed-Forward Neural Network

Problem, Data and Network Architecture

- Problem:
 - I/p sequence (X)
 : $X^0, X^1, ..., X^T$

 O/p sequence (O)
 : $O^0, O^1, ..., O^T$
 Ο
 - 0
- Representation of data:
 - I/p dimension 0 :4
 - $\bullet X^0 \to 0\ 1\ 1\ 0$
 - O/p dimension : 3 0
 - $\bullet \quad O^0 \to 0 \ 0 \ 1$
- Network Architecture
 - Number of neurons at I/p layer :4 Ο
 - Number of neurons at O/p layer : 3 Ο
 - Do we need hidden layers? Ο
 - If yes, number of neurons at each hidden layers

t

t

Network @ *t* = 1

t

1

Network @ t = 1

t

1

0

 $\begin{array}{ll} O^1 & = f(W.O^0 + U.X^1) \\ & = f([W, \, U] \, . \, [O^0, \, x^1]) \end{array}$

Network @ *t* = 2

t

2

1

0

Complete Network

When to use RNNs

Usage

- Depends on the problems that we aim to solve.
- Typically good for sequence processings.
- Some sort of memorization is required.

Bit reverse problem

- Problem definition:
 - **Problem 1:** Reverse a binary digit.
 - $\bullet \quad 0 \to 1 \quad \text{and} \quad 1 \to 0$
 - **Problem 2:** Reverse a sequence of binary digits.

 - Sequence: Fixed or Variable length
 - **Problem 3:** Reverse a sequence of bits over time.
 - **Problem 4:** Reverse a bit if the current i/p and previous o/p are same.

Data

Let

- Problem 1
 - I/p dimension: **1 bit** O/p dimension: **1 bit**
- Problem 2

0

- Fixed
 - I/p dimension: 10 bit
 O/p dimension: 10 bit
- Variable: Pad each sequence upto max sequence length: 10
 - Padding value: -1
 - I/p dimension: **10 bit** O/p dimension: **10 bit**

:10

• Problem 3 & 4

- Dimension of each element of I/p (X) : 1 bit
- Dimension of each element of O/p (O) : 1 bit
- Sequence length

No. of I/p neurons = I/p dimension No. of O/p neurons = O/p dimension

Network Architecture

Different configurations of RNNs

Image Captioning Sentiment Analysis Machine Translation Language modelling

Problems with RNNs

Language modelling: Example - 1

• "the clouds are in the *sky*"

Language modelling: Example - 2

• "India is my home country. I can speak fluent *Hindi*."

Vanishing/Exploding gradients

- Cue word for the prediction
 - Example 1: $sky \rightarrow clouds$ [3 units apart]
 - Example 2: $hindi \rightarrow India$ [9 units apart]
- As the sequence length increases, it becomes hard for RNNs to learn "long-term dependencies."
 - Vanishing gradients: If weights are small, gradient shrinks exponentially. Network stops learning.
 - **Exploding gradients:** If weights are large, gradient grows exponentially. Weights fluctuate and become unstable.

RNN extensions

- Bi-directional RNN
- Deep (Bi-directional) RNN

Long Short Term Memory (LSTM) Hochreiter & Schmidhuber (1997)

LSTM

- A variant of simple RNN (Vanilla RNN)
- Capable of learning long dependencies.
- Regulates information flow from recurrent units.

An LSTM cell

- Cell state c_t (blue arrow), hidden state h_t (green arrow) and input x_t (red arrow)
- Three gates
 - Forget (Red-dotted box)

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t])$$

$$c_t = f_t \otimes c_{t-1}$$

• Input (Green-dotted box)

$$z_t = tanh(W_z \cdot [h_{t-1}, x_t])$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t])$$

$$c_t = c_t + (i_t \otimes z_t)$$

• Output (Blue-dotted box)

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t])$$

$$c_{t-1} \xrightarrow{h_t} c_t$$

$$c_{t-1} \xrightarrow{x_t} f_{t-1} \xrightarrow{x_t$$

$$h_t = o_t \otimes tanh(c_t)$$

Gated Recurrent Units (GRU)

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio (2014)

Gated Recurrent Unit (GRU) [Cho et al. (2014)]

- A variant of simple RNN (Vanilla RNN)
- Similar to LSTM
 - Whatever LSTM can do GRU can also do.
- Differences
 - Cell state and hidden are merged together
 - \circ Two gates
 - Reset gate similar to forget
 - Update gate similar to input gate
 - No output gate
 - Cell/Hidden state is completely exposed to subsequent units.
- GRU needs fewer parameters to learn and is relatively efficient *w.r.t.* computation.

A GRU cell

$$z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$$

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$

$$\hat{h}_t = tanh(W \cdot [r_t \otimes h_{t-1}, x_t])$$

$$h_t = (1 - z_t) \otimes h_{t-1} + z_t \otimes \hat{h}_t$$

Application of DL methods for NLP tasks

NLP hierarchy

- Like deep learning, NLP happens in layers!
- Each task receives features from its previous (lower-level) task, and process them to produce its own output and so on.

Pragmatics & Discourse	Study of semantics in context.
Semantics	Meaning of the sentence.
Parsing	Syntactic structure of the sentence.
Chunking	Grouping of meaningful phrases.
Part of speech tagging	Grammatical classes.
Morphology	Study of word structure.

Increasing Complexity Of Processing

NLP problems

Problems	Paradigm
POS Tagging	Sequence Labelling
Named Entity Recognition	
Sentiment Analysis	Classification
Machine Translation	Sequence Transformation
Question Answering	
Summarization	

Sequence Labelling

RNN/LSTM/GRU for Sequence Labelling

Part-of-speech tagging:

• Given a sentence X, tag each word its corresponding grammatical class.

CNN for Sequence Labelling

- Sentence matrix
- Pad sentence to ensure the sequence length
 - Pad length = filter_size 1
 - Evenly distribute padding at the start and end of the sequence.
- Apply Convolution filters
- Classification

Classification

RNN/LSTM/GRU for Sentence Classification

Sentiment Classification:

• Given a sentence X, identify the expressed sentiment.

CNN for Sentence Classification

- 1. Sentence matrix
 - a. embeddings of words
- 2. Convolution filters
 - a. Total 6 filters; Two each of size 2, 3 & 4.
 - b. 1 feature maps for each filter
- 3. Pooling
 - a. 1-max pooling
- 4. Concatenate the max-pooled vector
- 5. Classification
 - a. Softmax

Sequence to sequence transformation with Attention Mechanism

Sequence labeling v/s Sequence transformation

• PoS Tagging

Why sequence transformation is required?

- For many application length of I/p and O/p are not necessarily same. E.g. Machine Translation, Summarization, Question Answering etc.
- For many application length of O/p is not known.
- Non-monotone mapping: Reordering of words.
- Applications for which sequence transformation is not require
 - PoS tagging,
 - Named Entity Recognition
 - o

Encode-Decode paradigm

- English-Hindi Machine Translation
 - Source sentence: 3 words
 - Target sentence: 4 words
 - Second word of the source sentence maps to 3rd & 4th words of the target sentence.
 - Third word of the source sentence maps to 2nd word of the target sentence

Problems with Encode-Decode paradigm

- Encoding transforms the entire sentence into a single vector.
- Decoding process uses this sentence representation for predicting the output.
 Quality of prediction depends upon the quality of sentence embeddings.
- After few time steps decoding process may not properly use the sentence representation due to long-term dependency.

Solutions

- To improve the quality of predictions we can
 - Improve the quality of sentence embeddings 'OR'
 - Present the source sentence representation for prediction at each time step. 'OR'
 - Present the RELEVANT source sentence representation for prediction at each time step.
 - Encode Attend Decode (Attention mechanism)

Attention Mechanism

- Represent the source sentence by the set of **output vectors** from the encoder.
- Each **output vector** (OV) at time *t* is a contextual representation of the input at time *t*.

Attention Mechanism

- Each of these output vectors (OVs) may not be equally relevant during decoding process at time *t*.
- Weighted average of the output vectors can resolve the relevancy.
 - Assign more weights to an output vector that needs more *attention* during decoding at time *t*.
- The weighted average *context vector (CV)* will be the input to decoder along with the sentence representation.

$$\circ \quad CV_i = \sum_j \ a_{ij} \cdot OV_j \qquad \qquad a_{ij} = \frac{exp}{\nabla T}$$

where a_{ij} is the attn-wt of the j^{th} OV

$$a_{ij} = \frac{exp(e_{ij})}{\sum_{k}^{T} exp(e_{ik})}$$

 $e_{ij} = FeedForward(s_{i-1}, OV_j)$

Attention Mechanism

- 1. Bi-RNN Encoder
- 2. Attention
- 3. RNN Decoder
- 4. Output Embeddings
- 5. Output probabilities

[Garc´ıa-Mart´ınez et al., 2016]

Attention - Types

Given an input sequence (x_1, x_2, \dots, x_N) and an output sequence (y_1, y_2, \dots, y_M)

- Encoder-Decoder Attention
 - $\circ \quad y_j \,|\, x_1^{}, \, x_2^{}, \, \ldots \,, \, x_N^{}$
- Decoder Attention
 - $\circ \quad y_{j} \mid y_{1}, y_{2}, \dots, y_{j-1}$
- Encoder Attention (Self) $\circ x_i | x_1, x_2, \dots, x_N$

Word Representation

Why do we need word representation?

- Many Machine Learning algorithms do not understand text data, they require input to be numeric. E.g. SVM, NN etc.
- Two types of representations
 - Local Representation
 - One hot
 - Cat = [0,0,0,0,1,0,0,0,0]
 - Sparse
 - No semantics
 - Curse of Dimensionality
 - Distributed Representation
 - Word embeddings
 - Cat = [2.4, 1.0,3.1,5.3]
 - Dense
 - Very good at capturing semantic relations.

Available word representation models

- Word2vec [Mikolov et al., 2013]
 - Contextual model
 - Two variants
 - Skip-gram
 - Continuous Bag-of-word
- GloVe [Pennington et al., 2014]
 - Co-occurrence matrix
 - Matrix Factorization
- FastText [Bojanowski et al., 2016]
 - Similar to word2vec
 - Works on sub-word level
- Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2018]
 - Based on Transformer model
- Embeddings from Language Models (ELMo) [Peters et al., 2018]
 - Contextual
 - The representation for each word depends on the entire context in which it is used.

Few good reads..

- Denny Britz; Recurrent Neural Networks Tutorial, Part 1-4 <u>http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/</u>
- Andrej Karpathy; The Unreasonable Effectiveness of Recurrent Neural Networks <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u>
- Chris Olah; Understanding LSTM Networks
 <u>http://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Question!

Workshop on

Al for Computational Social Systems (ACSS)

Sunday, 9th Feb 2020 (http://lcs2.iiitd.edu.in/acss2020/)

Registration Fee Rs. 200/-

Organizer Laboratory for Computational Social Systems (LCS2) @ IIIT Delhi. **Thank You!**