

End-to-End Goal Oriented Dialogue Systems

Tulika Saha PhD Scholar, CSE, AI-NLP-ML Lab Indian Institute of Technology Patna, India Under the Supervision of Dr. Sriparna Saha & Prof. Pushpak Bhattacharyya tulika.pcs16@iitp.ac.in / sahatulika15@gmail.com

Hello!! How can I help you ??

.....

Anytime

My Computer isn't working.

.....

Great!!!! that solved my problem

DIALOGUE SYSTEM

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

 RL allows the machine or software agent to learn its ideal behavior based on feedback from the environment i.e. REWARDS. Belo

The underlying principle behind RL :-

- Law of Effect :-
 - You do something, something good happens, so you try to do it more often if a similar situation arises.
 - You do something, something bad happens, so you try to do it less often if a similar situation arises.

A RL CHATBOT

- The RL Chatbot takes an action (a_t) at time t which is converted into speech by text-to-speech (TTS) unit
- The user's response, in the form of speech is converted to text by speech-to-text (STT) unit
- The output of the STT unit i.e. the observation (o_t) is received by the chatbot
- The user may either generate a reward signal (r_t) explicitly or it is derived from the user's response
- The task of the RL Chatbot is to respond in a way so as to maximize it's reward

A RL CHATBOT

WHY SEQUENTIAL DECISION MAKING ?

- Limited Supervision : you know what you want but not how to get it
- Actions have consequences
- Unlike classification, regression

REINFORCEMENT LEARNING

- Thus, any RL setup is mathematically described in terms of an abstraction called the Markov Decision Process (MDP)
- A MDP model is described by $M = \langle S; A; R; P; Rho \rangle$, where
 - S is the finite state space
 - A is the finite action space (corresponding to VA's action)
 - R is the reward model
 - P is the transition model
 - Rho is the initial state distribution
- The idea is to implement RL for learning dialogue strategies using the Q-learning algorithm
 - The main idea in Q-learning is that we can iteratively approximate the Q-function using the Bellman Equation (via Dynamic programming but still slow)
 - Hence, the Q-function will be approximated using a neural network (incorporation of Deep RL)

Q LEARNING

- Q-learning defines a function Q(s,a) which represents the discounted future reward when we perform action a in state s, and continue optimally from that point on.
- The way to think about *Q*(*s*,*a*) is that it is "the best possible score at the end of an episode after performing action *a* in state *s*"
- It is called Q-function, because it represents the "quality" of certain action in given state.
- If you want to select the action that results in the highest score at the end of an episode
 - Pick the action with the highest Q-value : $\pi(s) = \operatorname{argmax}_{a}Q(s,a)$
- The main idea in Q-learning is that we can iteratively approximate the Qfunction using the Bellman equation
 - $Q(s,a) = r + \gamma \max_{a'}Q(s',a')$
 - Here γ is the discount factor between 0 and 1 the more into the future the reward is the less we take it into consideration

Deep Q Network (DQN)

- In DRL, the Q-function is implemented and approximated using a neural network,
 - i.e., by acting as a function approximator, we can take any number of possible states that can be represented as) a vector into map them to Q-values.
- The Q-function of a DQN agent is parameterized as *L*(*w*) ere s are the parameters or the weights of the neural network at iteration
 i.
 L(*θ_i*) = *E*_{MB}[(*r* + γ * max _{q'}Q(s', a'; *θ_i*) - Q(s, a; *θ_i*))]
 O A Q-network can be trained by minimizing a sequence of loss functions,
 i.
 i.
 L(*θ_i*) = *E*_{MB}[(*r* + γ * max _{q'}Q(s', a'; *θ_i*) - Q(s, a; *θ_i*))]
 O A Q-network can be trained by minimizing a sequence of loss functions,
 i.
 i.
 L(*θ_i*) = *E*_{MB}[(*r* + γ * max _{q'}Q(s', a'; *θ_i*) - Q(s, a; *θ_i*))]
 O A Q-network can be trained by minimizing a sequence of loss functions,
 i.
 i.

where s are the parameters of the neural network at iteration *i*, s are the target parameters of the neural network at iteration *i* and **MB**s are the mini-batches of experience.

DOUBLE DEEP Q NETWORK (DDQN)

- One issue with the DQN algorithm is that it is more likely to overestimate the Q function values due to the *max* in Equation used to set targets.
- Thus, the action with the maximal positive error is selected and this value is consequently propagated further to the next states.
 - This leads to positive bias value overestimation which severely impacts the stability of the learning algorithm.
- The DDQA algo the is said to overcome this particular problem. In this algorithm, two Q functions and are independently learned.
 - One function is then $Q_{s}ed tQ_{2}$ determine the maximizing action and second to estimate its value. Either randomly \overline{as}^{r} : $+ \gamma * Q_{2}(s', argmax_{a'}Q_{1}^{r}(s', a'))$ $Q_{2}(s, a) = r + \gamma * Q_{1}(s', argmax_{a'}Q_{2}(s', a'))$

• Hence, it was proven that by decoupling the maximizing action from

DDQN with Priority Experience Replay (DDQN-PER)

- Another concept that is acknowledged in the literature is how the experiences are used for training.
- When all the samples are treated alike, one of the aspects which gets ignored is that learning happens more from some transitions than from others.
- PER is one such strategy that tries to leverage this fact by changing the sampling distribution.
- The main idea is that those transitions are preferred that do not fit well to the current estimate of the Q function, because these are some transitions from which maximum learning can happen.

DIALOGUE MANAGEMENT STRATEGY

DIALOGUE MANAGEMENT STRATEGY

- The main function of the dialogue management component is to control the flow of the dialogue. This involves the following task:
 - Determining whether sufficient information has been elicited from the user in order to take a suitable action
 - Execute an action
 - Communicate with an application
 - Communicate with the user

PROBLEM STATEMENT

- Developing a Dialogue Management Strategy for Task-Oriented Virtual Agent
- Using Reinforcement Learning (Deep RL)

DOMAIN - 'FLIGHT' ENQUIRY

Dataset used : Airline Travel Information System (ATIS)

Task : The Virtual Agent (VA) need to interact with a user so as to gather information from him/her regarding the details of flight that he/she wishes to book.

Slots to be filled for the information system :

'deptCity': The city of departure eg. Washington
'arrCity': The arrival city eg. Baltimore
'deptDay': The date of departure eg. fourth july
'deptTime': The time of departure eg. afternoon, 4 pm
'class': The class of flight for eg. economy, business

PROPOSED MDP

State : a tuple of 5 variables

[deptCity, arrCity, deptDay, deptTime, class]

- The variables correspond to confidence scores for each slot outputted from NLU module
- Permissible range is from 0 to 1

Action : 14 possible actions are there with the agent as follows :

- **Salutation :** closing_conversation
- **Ask :** askdeptCity, askarrCity, askdeptTime, askdepDay, askclass
- Reask/Confirm : reaskdeptCity, reaskarrCity, reaskdeptTime, reaskdepDay, reaskclass
- Hybrid Actions : askDeptandArr, askDateTime

REWARD MODEL

Different reward function at different time-step/ for different actions in conversation

- For any action except terminating action

 $R(s, a, s') = (w_1 * (|| \overrightarrow{NS} ||_1 - || \overrightarrow{CS} ||_1) - w_2)$

- II NS II, ate is the summation of the confidence scores of all state variables in the state vector 's`' obtained after taking an action 'a' in state 's'.
- state is the summation of confidence scores for all state variables in state $||\vec{cs}||_1$:or 's'
- is used to encourage the agent to act in a way as to increase confidence on the acquired slots
- cquired slots - w_1^2 is used to discourage unnecessary questions and iterations with the user.
- = 1 and = 8

 w_2

 w_2

 w_1

REWARD MODEL

- For terminating action, -
 - The condition is that how many slots has a confidence score above a threshold say 0.7, the condition is satisfied when all slots match the criteria.
 - If the condition is not satisfied, the reward function is : -

- $R(s, a, s') = -w_1 * (||\overrightarrow{EV}||_1 ||\overrightarrow{CS}||_1)$ $||\overrightarrow{EV}||_{\downarrow}$ adds up to 5.
- If the condition is satisfied :

 $R(s, a, s') = w_1 * ||\overrightarrow{CS}||_1$

NLU MODULE

- LSTM module is used for the NLU part.
- The task of the NLU is to take in a sentence and give out the slots identified from the sentence.
- We extract the slot identified and the probability of that slot from the model

FLOW DIAGRAM OF THE SYSTEM

METRICS TO EVALUATE THE PERFORMANCE OF VA

- Learning Curve during training : This gives a visual representation of the learning pattern and growth of the VA during training.
- **Training Time** : It gives an estimate of the computational requirement of different VAs.
- Average Episodic Reward : It is the average cumulative reward through all the time-steps at the end of a dialogue.
 - Higher the episodic reward, better is the chance of task-completion.
- Average Dialogue Length : It is basically the average system actions per dialogue.
 - The VA should be able to complete its task in less number of time-steps.

RESULTS

 Many variations of the Q learning approach were used the best results were obtained from Double Deep Q- Network using Prioritized Experience Replay

	Algorithm	Average Episodic	Average Dialogue	Training Time
		Reward	Length	(in hrs)
Simple Reward Model	DQN with SVM	-6.89 ± 5.62	673.45 ± 564.02	71.97
	DDQN with SVM	-8.51 ± 5.40	791.65 ± 529.12	93.65
	DDQN-PER with SVM	-13.51 ± 9.15	1342.3 ± 915.20	52.56
	DDQN-PER	-11.26 ± 9.17	1039.07 ± 933.62	112.12
Proposed Reward Model	DQN with SVM	-313.25 ± 308.63	367.52 ± 315.03	40.71
	DDQN with SVM	-273.52 ± 271.97	330.52 ± 278.67	54.2
	DQN-PER with SVM	-131.80 ± 181.13	183.2 ± 182.07	18.47
	DQN-PER	-569.85 ± 469.48	589.03 ± 479.09	16.83
	DDQN-PER with SVM	$\textbf{57.20} \pm \textbf{7.99}$	$\textbf{7.67} \pm \textbf{0.53}$	20.82
	DDQN-PER	$\textbf{50.07} \pm \textbf{8.11}$	$\textbf{8.09} \pm \textbf{1.06}$	17.74

Learning Curves of the Virtual Agent

Left : shows the learning curve for the Q-table implementation **Right :** shows the learning curve for DDQN-PER algorithm

SAMPLE CONVERSATION

State : [0. 0. 0. 0. 0.] Agent > Hello How may I help you? User > flights from pittsburgh to denver on fifteenth june at afternoon State : [1. 1. 0.558 1. 0.] Agent[askclass] > Please specify the class of flight? Dialogue 1 (Reasks the dept Date when unsure) User > business class State : [1. 1. 0.558 1. 1.] Agent[reaskdepDay] > Are you travelling on fifteenth june? User > yes State : [1. 1. 1. 1. 1.] Agent[closing_conversation] > The flights from pittsburgh to denver on fifteenth june at afternoon via business class are JW345, US298 Thanks for using the flight attendant. State : [0. 0. 0. 0. 0.] Agent > Hello How may I help you? User > I want to travel from pittsburgh to denver State : [1. 1. 0. 0. 0.] Agent[askDateTime] > Specify the time and date? User > Need to travel on twenty eight december at evening Dialogue 2 State : [1. 1. 0.97 0.994 0. Agent[askclass] > Please specify the class of flight? User > I want to travel in economy class State : [1. 1. 0.97 0.994 0.968] Agent[closing_conversation] > The flights from pittsburgh to denver on twenty eight december at evening via economy class are TG564, GF298. Thanks for using the flight attendant.

For further reading,

Saha, T., Gupta, D., Saha, S. & Bhattacharyya, P. (2018). Reinforcement learning based dialogue management strategy. **In Proceedings of International Conference on Neural Information Processing** (pp. 359-372). Springer Code : https://github.com/sahatulika15/RLDS_DEMO **THANK YOU !**